
Game Graphics & Real-time Rendering
CMPM 163, W2018

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Lucas Ferreira (TA)
lferreira@ucsc.edu

creativecoding.soe.ucsc.edu/courses/cmpm163
github.com/CreativeCodingLab

Class information

Class website:
https://creativecoding.soe.ucsc.edu/courses/cmpm163

Slack is the main form of class communication:
https://ucsc-creativecoding.slack.com/messages/cmpm163
https://ucsc-creativecoding.slack.com/messages/cmpm163-lab

Lucas Ferraria is our TA:
He will run the lab sessions starting next week

For Thursday
Play around with Three.js:
- Make sure you can get the Three.js library downloaded + working

on your laptop or a lab computer
- Get the code example from this page to work:

https://threejs.org/docs/index.html#manual/introduction/Creating-
a-scene

- Look through the example code at: https://threejs.org/examples/
- Some examples:
- https://threejs.org/examples/#webgl_materials_shaders_fresnel
- https://threejs.org/examples/#webgl_shader_lava
- https://threejs.org/examples/#webgl_shaders_ocean
- https://threejs.org/examples/#webgl_shader2

Setting up Three.js
Pretty straightforward to setup!
Copy the three.js (or three.min.js) library to the same folder
as your program, or a subfolder that lives in the same
directory as your program. (I have it in a folder called js/)

Start a webserver (not needed for simple examples, but is
useful when you are loading in models, textures):
python -m SimpleHTTPServer 8888

Then in your browser, go to:
http://localhost:8888

3D Scene
In most graphics framework, a scene consists of:
- Cameras: A camera characterizes the extent of the 3D

space that will be projected onto the 2D image plane
- Lights: Different positions, orientations, colors, and types

of light are used to illuminate the scene
- Geometry: Objects made out of triangles populate the

scene, and are lit by the different light source
- Materials: The objects in the scene can be characterized

by different material properties
- Textures: The objects can also have different textures, or

images, placed on them

Perspective camera

Perspective camera

Rendering pipeline
The rendering pipeline describes the series of
operations that transform your programmatically
defined 3D scene into an actual 2D image.
This is done using shaders.
- Vertex shader: The vertex shader is responsible for

turning 3D geometry into “normalized device
coordinates” (2D values between -1 and +1, plus a
depth value)

- Fragment/pixel shader: The fragment shader is
responsible for coloring in each of those pixels, and
then outputting it on the 2D screen

Each GLSL shader lives in its own file. At the start of an
application, these files are compiled into a ”program” and
copied over to the GPU, along with texture data.
When the application is running, usually at 60fps, during
each frame, the following step occur:
- 1. The shader program is activated on the GPU (“bound”)
- 2. Any texture data you will use is also bound (ie, made

available to the shader)
- 3. 3D points describing your geometry are passed in to

the GPU, and input into your vertex shader, one triangle
at a time

- 4. The vertex shader projects the triangle into a simpler
coordinate system and outputs it as “fragment,” or pixel
data, which is input into the fragment shader

- 5. The fragment shader decides what color to make each
pixel, and then draws it on the screen

Perspective camera

Rendering pipeline
Let’s look at a high level description of this process,
using Three.js. (Most graphics/game frameworks
conceptualize this process similarly.)

This is done using shaders.
- Vertex shader: The vertex shader is responsible for

turning 3D geometry into 2D pixels
- Fragment/pixel shader: The fragment shader is

responsible for coloring in each of those pixels

//define the (currently empty) scene, which keeps track of all
the elements used in the rendering process
var scene = new THREE.Scene();

//define the camera that looks onto this scene
var camera = new THREE.PerspectiveCamera(
75, window.innerWidth/window.innerHeight, 0.1, 1000);

//define the renderer that is used to visualize this geometry
var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

Perspective camera

//create geometry, made out of 12 triangles
var geometry = new THREE.BoxGeometry(1, 1, 1);
//define a material that an be used to describe how the
geometry absorbs, reflects, and/or emits light
var material = new THREE.MeshBasicMaterial({ color:
0x00ff00 });
//define a mesh, which assigns a material to the geometry
var cube = new THREE.Mesh(geometry, material); scene.add(
cube);

//position the camera so that it looks toward the origin of the
scene
camera.position.z = 5;

//define the animation loop
var animate = function () {

//sync up the timing of this loop with screen refresh (e.g., 60fps)
requestAnimationFrame(animate);

//make some changes to the position of your mesh
cube.rotation.x += 0.1; cube.rotation.y += 0.1;

//pass your data (the geometry in the scene + the camera definition)
into the WebGL renderer, ie, into the Three.js default shaders

renderer.render(scene, camera);
};

//start the animation loop
animate();

Three.js shaders
Three.js provides some default shaders, which are
defined by the different THREE.Material classes.

This line
var material = new THREE.MeshBasicMaterial({ color:

0x00ff00 });
creates a simple vertex shader and fragment shader,
which is bound when the geometry it’s attached to (via
the Mesh object) is rendered.

Three.js shaders
The most basic vertex shader is called a “pass-through shader”

This vertex shader does only this:
It takes each triangle used to define your geometry and projects

it into 2D, then passes this 2D data to the fragment shader.

The most basic fragment shader simply gives each pixel a color
value.

When we used { color: 0x00ff00 } as an argument when we
instantiated our “Basic Material,” it was used to create a fragment
shader that colors (“shades”) every pixel green.

Three.js shaders
We can also define more complex shaders.

A more interesting shader is called a “Phong shader,” named after Bui
Tuong Phong, a computer scientist who studied at University of Utah
(where much of computer graphics was invented). It approximates
ambient, diffuse, and specular lighting.

Three.js has this built in to one of its materials, MeshPhongMaterial. But
we can create it ourselves using shaders.

As before, it takes each triangle used to define your geometry and
projects it into 2D, then passes this 2D data to the fragment shader.

But each triangle is colored depending on the interaction between: the
camera orientation, the surface normal, and the light position

Phong shading
As before, this shader it takes each triangle used to define your
geometry and projects it into 2D, then passes this 2D data to
the fragment shader.

But each triangle is colored depending on the interaction
between: the camera orientation, the surface normal, and the
light position.
- The camera position and orientation is defined by your

renderer
- The surface normal is created automatically by Three.js for its

default shapes, and any modeling software will also create
these for you

- The light position is specified by you and explicitly passed
into the shader program

Blinn-Phong lighting

//define the position of the point lights
var ambient = new THREE.Vector3(0.1,0.1,0.1);

var light1_pos = new THREE.Vector3(0.0,10.0,0.0); //above
var light1_diffuse = new THREE.Vector3(1.0,0.0,0.0); //red
var light1_specular = new THREE.Vector3(1.0,1.0,1.0);

var light2_pos = new THREE.Vector3(-10.0,0.0,0.0); //left
var light2_diffuse = new THREE.Vector3(0.0,0.0,1.0); //blue
var light2_specular = new THREE.Vector3(1.0,1.0,1.0);

// define the geometry
var geometry1 = new THREE.SphereGeometry(1, 64, 64);
var geometry2 = new THREE.BoxGeometry(1, 1, 1);
var geometry3 = new THREE.TorusKnotGeometry(1, 0.1, 100,
16);

// define the materials – here we are defining our bridge to
the shader programs
material = new THREE.RawShaderMaterial({

uniforms: uniforms,
vertexShader: vs,
fragmentShader: fs,

});

uniform: data that is static over the life of the binding – It will be the same
for all geometry passed in the shader. Three.js defines the camera data for
you automatically if you use their Camera objects and link it to the scene.
attribute: data that is defined per vertex for each geometry that you pass
in (i.e., position, normal, texture coordinates). Three.js defines most of this
for you automatically.
varying: this is how you link data from the vertex shader to the fragment
shader.
var uniforms = {

ambient: { type: "v3", value: ambient },
light1_pos: { type: "v3", value: light1_pos },
light1_diffuse: { type: "v3", value: light1_diffuse },
light1_specular: { type: "v3", value: light1_specular },
light2_pos: { type: "v3", value: light2_pos },
light2_diffuse: { type: "v3", value: light2_diffuse },
light2_specular: { type: "v3", value: light2_specular },

};

uniform: data that is static over the life of the binding – It will
be the same for all geometry passed in the shader. Three.js
defines the camera data for you automatically if you use their
Camera objects and link it to the scene. Uniform variable are
available to both the vertex and the fragment shader.
attribute: data that is defined per vertex for each geometry
that you pass in (i.e., position, normal, texture coordinates).
Three.js defines most of this for you automatically. Attribute
data is only available in the vertex shader.
varying: this is how you link data from the vertex shader to
the fragment shader.

var uniforms = {
ambient: { type: "v3", value: ambient },
light1_pos: { type: "v3", value: light1_pos },
light1_diffuse: { type: "v3", value: light1_diffuse },
light1_specular: { type: "v3", value: light1_specular },

light2_pos: { type: "v3", value: light2_pos },
light2_diffuse: { type: "v3", value: light2_diffuse },
light2_specular: { type: "v3", value: light2_specular },

};

A GLSL shader looks a lot like a C program, which some
differences and limitations.

In its “main()” function, the vertex shader must define a
variable called gl_Position.

In its “main()” function, the fragment shaderr must define a
variable called gl_FragColor.

Let’s look at our shader programs…

Get code to run on your laptop
Customize the code (without breaking it!)
- Change the color of the lights
- Try out different shapes (go to https://threejs.org/docs/

and then scroll down to “Geometries”)
- Change the gl_FragColor output and see what happens
- Play with the rotation speeds of the objects or make

the lights move

Questions?
- Homework package #1 will be handed out on Tuesday

next week

- Lab sessions will start next week (led by Lucas)

Game Graphics & Real-time Rendering
CMPM 163, W2018

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Lucas Ferreira (TA)
lferreira@ucsc.edu

creativecoding.soe.ucsc.edu/courses/cmpm163
github.com/CreativeCodingLab

