
Game Graphics & Real-time Rendering
CMPM 163, W2018

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Lucas Ferreira (TA)
lferreira@ucsc.edu

creativecoding.soe.ucsc.edu/courses/cmpm163
github.com/CreativeCodingLab

Last class
- Went over GLSL data types and syntax
- Discussed how to pass data from the CPU to the GPU
- Discussed how to pass data between the vertex

shader and the fragment shader
- Looked more closely at GLSL syntax

https://www.khronos.org/files/webgl/webgl-
reference-card-1_0.pdf

- Introduced GLSL textures
- Announced Homework #1

This class
- Exploring textures
- How to write an image processing shader
- How to use Frame Buffer Objects to render to an off-

screen texture (using Three.js’ WebGLRenderTarget)
- How to swap textures using a “pingpong” strategy to

perform computation using data stored in textures
- Using textures as arrays of data
- https://creativecoding.soe.ucsc.edu/courses/cmpm163

/code/week2_codeExamples.zip

UV mapping
- Three.js will generate UV coordinates (texture

coordinates) for its basic Geometry objects. Not
always what you want though…

- If you use BufferGeometry, you have to specify the
UV coordinates yourself

- All modeling software (such as Blender) will create
UV coordinates for you, which can be loaded into
Three.js (as shown by Lucas in the Lab session)

- Most modeling software helps you to create “texture
atlases” for complex characters

Using textures in GLSL
In Three.js, use the TextureLoader helper method and
the “t” data type to link it to your shader program

var myTexture = new THREE.TextureLoader().load(’myImage.jpg');
var uniforms = { tex: { type: "t", value: myTexture } };
var material = new THREE.RawShaderMaterial({

uniforms: uniforms,
vertexShader: vs,
fragmentShader: fs

});

Using textures in GLSL
The vertex shader needs to set up a varying so that the UV
coordinates are available in the fragment shader.

uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
attribute vec3 position;
attribute vec2 texCoords;
varying vec2 UV;

void main() {
UV = texCoords;
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);

}

Using textures in GLSL
The fragement shader can then read that varying in order to
sample from the texture.

uniform sampler2D tex; //special type used to access texture data
varying vec2 UV; //must match a varying defined in the vertex shader

void main() {
vec4 c = texture2D(tex, UV); //special method to sample from texture
gl_FragColor = vec4(c);

}

Querying neighbors
- Conceptually, all fragments are processed simultaneously.

Thus, when the fragment shader is in the midst of
processing one pixel, it can not directly get information
about any of the other fragments.

- However, in the fragment shader, if we are passing in a
texture, then we can easily query the neighboring pixels in
the texture (also called “texels”), as long as we know the
width and height of the texture.

- We can pass this info in as uniforms. (The resolution of the
texture usually doesn’t match the resolution of the
display…)

Querying neighbors
uniform sampler2D tex; uniform float rx; uniform float ry;
varying vec2 UV;
void main() {

vec4 c = texture2D(tex, UV);
vec2 texelSize = vec2(1.0/rx, 1.0/ry);
vec2 left = UV + texel * vec2(-1.0, 0.0); //get texcoord for

texel to the left
vec4 pixelValueOfTexelToTheLeft = texture2D(tex, left);

//get color of that texel
gl_FragColor = mix(c, left, 0.5); //create a simple blur effect

by averaging the current pixel with its neighbor to the left

Image processing – edge detection
- You can also do more sophisticated querying and processing of
texture data within the fragment shader. For example, we can
define an image processing kernel that looks at each pixel’s
neighbors to determine if the current pixel is an edge.
- That is, we can check if there is a discontinuity between the color
of the current pixel and its neighbors in the x or y direction, and
have the fragment shader output that information to the screen.
- (See code example “w2_edge.html” where we blend an input
image and its edges to create a sketch-like output of a photo.)

https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Edge_detection

Render to texture
- A very powerful idea used to create a wide range of visual effects is to
render the output of a shader program to an off-screen buffer (rather than
to the display) so that you can apply multiple rendering passes to your
scene (or parts of your scene).

var bufferObject = new THREE.WebGLRenderTarget(w, h); //creates the
off-screen buffer, also called a Frame Buffer Object, or FBO

- We can then define an addition Scene object, as well as a camera that
makes sense for that scene, and add geometry to this scene:
var bufferScene = new THREE.Scene();
var bufferCamera = new THREE.PerspectiveCamera(60, w/h, 1, 1000);

Render to texture
- Then, in our rendering loop, we can render all the objects in this scene,
except that they are written to an off-screen texture, rather than displayed
on the screen
renderer.render(bufferScene, bufferCamera, bufferObject); //to texture

- We can then use that off-screen texture for some other purpose. That is,
we can use it like an ordinary texture. In the w2_renderToTexture.html
code, I render our original week1 Phong shader demo to an off-screen
texture, and then I use that texture to “decal” a cube, and then render
that to the display.
renderer.render(scene, camera); //render to screen (also note wireframe)

“Ping pong” textures
- Building off of the render to texture example, we can use our shaders

to perform general computation using our texture data.
- Within GLSL, textures are read-only, and we can’t write directly to our

input textures, we can only “sample” them.
- Using the render to texture target, however, we can use the output of

the shader itself to write to a texture.
- Then, if we can chain together multiple rendering passes, the output of

one rendering pass becomes the input for the next pass.
- In the ping-pong technique, we create a kind of simple ring buffer,

where after every frame we swap the off-screen buffer that is being
read from with the off-screen buffer that is being written to.

- We can then use the off-screen buffer that was just written to, and
display that to the screen.

“Ping pong” textures
- We can then use the off-screen buffer that was just written to, and

display that to the screen.
- This provides with a way to perform iterative computation on the GPU,

which is useful for simulating a range of effects, such as smoke, water,
clouds, fire, etc. (which we’ll explore in the coming weeks).

- In the w2_gol_pingpong.html example, I show how we can use this
technique to make a GPU version of Conway’s Game of Life:
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

- The Game of Life is a simple simulation that shows how even very
simple rules can give rise to interesting, complex, emergent behaviors.

Game of Life
The universe of the Game of Life is an infinite two-
dimensional orthogonal grid of square cells, each of which is in one of two
possible states, alive or dead, or "populated" or "unpopulated". Every cell
interacts with its eight neighbours, which are the cells that are
horizontally, vertically, or diagonally adjacent. At each step in time, the
following transitions occur:
- Any live cell with fewer than two live neighbors dies, as if caused by
underpopulation.
- Any live cell with two or three live neighbours lives on to the next generation.
- Any live cell with more than three live neighbours dies, as if by overpopulation.
- Any dead cell with exactly three live neighbours becomes a live cell, as if by
reproduction.

Code is a bit complex, so let’s walk through it together…

Game of Life
The universe of the Game of Life is an infinite two-
dimensional orthogonal grid of square cells, each of which is in one of two
possible states, alive or dead, or "populated" or "unpopulated". Every cell
interacts with its eight neighbours, which are the cells that are
horizontally, vertically, or diagonally adjacent. At each step in time, the
following transitions occur:
- Any live cell with fewer than two live neighbors dies, as if caused by
underpopulation.
- Any live cell with two or three live neighbours lives on to the next generation.
- Any live cell with more than three live neighbours dies, as if by overpopulation.
- Any dead cell with exactly three live neighbours becomes a live cell, as if by
reproduction.

w2_gol_pingpong.html

Questions?
Can you put the output of the Game of Life onto a cube? (ie, combine
the render to texture shader and the pingpong shader)

Look at new code examples for week2, you will build off of them for
your Homework assignment

Next week:
- Noise functions
- Introduction to particle systems
- ”Sky box” textures / environmental mapping
- reflective & refractive materials
- Vertex displacement shaders + height maps from textures

Game Graphics & Real-time Rendering
CMPM 163, W2018

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Lucas Ferreira (TA)
lferreira@ucsc.edu

creativecoding.soe.ucsc.edu/courses/cmpm163
github.com/CreativeCodingLab

