
Game Graphics & Real-time Rendering
CMPM 163, W2018

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Lucas Ferreira (TA)
lferreira@ucsc.edu

creativecoding.soe.ucsc.edu/courses/cmpm163
github.com/CreativeCodingLab

Last week
- Gave an overview of the rendering pipeline
- Looked at two Three.js programs
- Introduced writing custom shaders in Three.js using

the RawShaderMaterial object
- Looked at GLSL syntax

https://www.khronos.org/files/webgl/webgl-
reference-card-1_0.pdf

This week
- Continue to explore writing custom shaders in Three.js

using the RawShaderMaterial object
- Go over GLSL data types and syntax
- Discuss how to pass data from the CPU to the GPU
- Discuss how to pass data between the vertex shader and

the fragment shader
- Introduce GLSL textures
- Intoduce offscreen buffers (Frame Buffer Objects)
- Introduce first homework packet
- https://creativecoding.soe.ucsc.edu/courses/cmpm163/co

de/week2_codeExamples.zip

3D Scene
In most graphics framework, a scene consists of:
- Cameras: A camera characterizes the extent of the 3D

space that will be projected onto the 2D image plane
- Lights: Different positions, orientations, colors, and types

of light are used to illuminate the scene
- Geometry: Objects made out of triangles populate the

scene, and are lit by the different light source
- Materials: The objects in the scene can be characterized

by different material properties
- Textures: The objects can also have different textures, or

images, placed on them

Rendering pipeline
The rendering pipeline describes the series of
operations that transform your programmatically
defined 3D scene into an actual 2D image.
This is done using shaders.
- Vertex shader: The vertex shader is responsible for

turning 3D geometry into “normalized device
coordinates” (2D values between -1 and +1, plus a
depth value)

- Fragment/pixel shader: The fragment shader is
responsible for coloring in each of those pixels, and
then outputting it on the 2D screen

Perspective camera

uniform: data that is static over the life of the binding – It will
be the same for all geometry passed in the shader. Three.js
defines the camera data for you automatically if you use their
Camera objects and link it to the scene. Uniform variable are
available to both the vertex and the fragment shader.
attribute: data that is defined per vertex for each geometry
that you pass in (i.e., position, normal, texture coordinates).
Three.js defines most of this for you automatically. Attribute
data is only available in the vertex shader.
varying: this is how you link data from the vertex shader to
the fragment shader.

uniforms:
To define a uniform in Three.js, you use the following syntax, var
uniforms = {

x_and_y: { type: ”2f", value: arrayWithTwoVals},
light1_pos: { type: "v3", value: light1_pos },
light1_diffuse: { type: "v3", value: light1_diffuse },
light1_specular: { type: "v3", value: light1_specular },
timerVal: { type: ”f", value: time },
someNumber: { type: ”i", value: myInteger},
specialMatrix: { type: "Matrix4fv", value: fancyMatrix},

};
It serves as a kind of a contract. You are telling the shader what to
expect will be passed in from the CPU. Thus, your shader needs to
have uniform variables defined so that it is ready to receive this
data.
https://github.com/mrdoob/three.js/wiki/Uniforms-types

varying:
Varying variables provide an interface between the vertex and
the fragment shader.

Vertex shaders compute values per vertex and fragment
shaders compute values per fragment. If you define a varying
variable in a vertex shader, its value will be interpolated over
the primitive being rendered, and you can access the
interpolated value in the fragment shader.

Download code:
https://creativecoding.soe.ucsc.edu/courses/cmpm163/code/
week2_codeExamples.zip

The code example, “w2_varying.html”, shows how to use the
varying keyword to pass color attribute data from the vertex
shader to the fragment shader.

It also introduces Three.js’ BufferGeometry, which gives you
more control over how you set up the geometry. Specifically,
it lets you define the attribute data yourself.

We will create a triangle. We are required to define the
position of all the points in the triangle. We also attach two
colors to each point on the triangle.

//instantiate a new BufferGeometry
var geometry = new THREE.BufferGeometry();

//define the data for the geometry
var vertices = new Float32Array([

Math.cos(toRad(90.0)) * 2, Math.sin(toRad(90.0)) * 2, 0.0,
Math.cos(toRad(210.0)) * 2, Math.sin(toRad(210.0)) * 2, 0.0,
Math.cos(toRad(330.0)) * 2, Math.sin(toRad(330.0)) * 2, 0.0]);

var colors1 = new Float32Array([1.0,0.0,0.0, 0.0,1.0,0.0, 0.0,0.0,1.0]);
var colors2 = new Float32Array([0.0,1.0,0.0, 0.0,0.0,1.0, 1.0,0.0,0.0]);

//link the data as attributes available to the vertex shader
geometry.addAttribute('position', new THREE.BufferAttribute(vertices, 3));
geometry.addAttribute('color1', new THREE.BufferAttribute(colors1, 3));
geometry.addAttribute('color2', new THREE.BufferAttribute(colors2, 3));

Questions?
- Look at other code examples for week2 (especially the

texture example)

- Lab sessions take place tomorrow and Thursday
(led by Lucas)

- Lab will cover how to load in more complex objects

- Make sure you understand the material we’ve covered
so far

Game Graphics & Real-time Rendering
CMPM 163, W2018

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Lucas Ferreira (TA)
lferreira@ucsc.edu

creativecoding.soe.ucsc.edu/courses/cmpm163
github.com/CreativeCodingLab

