Game Graphics & Real-time Rendering
CMPM 163, W2018

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Lucas Ferreira (TA)
Iferreira@ucsc.edu

creativecoding.soe.ucsc.edu/courses/cmpm163
github.com/CreativeCodinglLab

Last week

Looked at how to track mouse points in a fragment shader, and
how to find the distance between a fragment and that point

Showed how to use a texture as a height map in a vertex
displacement shader

Introduced Perlin noise to generate naturalistic dynamic textures
and meshes

Looked at how to use point sprites in Three.js and to texture
them using a fragment shader

Introduced particle systems & the dat.gui library

https://creativecoding.soe.ucsc.edu/courses/cmpm163/code/wee
k3_codeExamples.zip

https://creativecoding.soe.ucsc.edu/courses/cmpm163/code/wee
k4_codeExamples.zip

This week

- Homework #2 introduced — Due Feb. 18th at 12noon

- Voronoi cells, redux

- Drawing 2D shapes using signed distance functions (SDFs)
- Drawing nice looking text using SDFs

- Raymarching 3D objects

- Shading 3D SDFs

- Morphing between SDFs

- https://creativecoding.soe.ucsc.edu/courses/cmpm163/code/wee
k5_codeExamples.zip

Homework 2

Homework #2 introduced — Due Feb. 18t at 12noon
Design two scenes:

1) Outdoor scene using cube map, height map, textures
2) Abstract scene using noise functions and particle systems

Some points given for creativity, beauty, composition.

Extra credit given for additional functionality (textured point
sprites, reflection+refractive effects)

This week

- Homework #2 introduced — Due Feb. 18t at 12noon

- Voronoi cells, redux

- Drawing 2D shapes using signed distance functions (SDFs)
- Drawing nice looking text using SDFs

- Midterm review

- https://creativecoding.soe.ucsc.edu/courses/cmpm163/code/wee
k5_codeExamples.zip

Voronoi tesselation

Given a set of points {p,, ..., p,} on a 2D plane, a Voronoi cell is
defined for each point p, where the distance to p, is less than the
distance to any other cell p;.

Ry ={z € X |d(z, Py) <d(z, P;) for all j # k}

S i \ﬁﬂaﬁ@.) 206"
- f N‘b 4 v&
BINERAL)

m —— i B

m N\ .\
-\ G Nl VW
|

e

Voronoi tesselation

In fragment shader, we are able to determine the geometry
without passing in any vertices to the vertex shader (other than

those that define the fullscreen quad).

That is, we let each pixel in the fragment shader determine

whether or not it is part of a shape defined by some function.
(see iquilezles.org/www/articles/voronoilines/voronoilines.htm for a discussion
on how to calculate cell borders accurately.)

We can extend this idea to draw arbitrary shapes:
https://www.shadertoy.com/view/4dfXDn

Signed distance functions (SDF)

float circleDist(vec2 p, float radius) {
return length(p) - radius;

}

Ex:
p = vec2(200.0,0.0);
radius = 100.0;

return value > 0.0; //is outside the circle

Signed distance functions (SDF)

float circleDist(vec2 p, float radius) {
return length(p) - radius;

}

Ex:

p = vec2(25.0,25.0);
radius = 40.0;

return value < 0.0: //is inside the circle

Signed distance functions (SDF)

float circleDist(vec2 p, float radius) {
return length(p) - radius;

}

Ex:
p = VGCZ(0.0,-1 000):
radius = 100.0;

return value = 0.0; //is on the circle’s edge

2D Signed distance functions (SDF)

https://www.shadertoy.com/view/4dfXDn

Different ways of rendering text

HTML: overlay a div on top of the webGL canvas and draw with normal

html

- Can’t do anything super fancy with the text, not part of OpenGL
pipeline

Font atlas: store each letter onto an image, keep track of the texture
coords for each letter, use those texture coords to decal a rectangle

- Good for overlaying on top of scene, can use color info to find
edges or update colors inside or outside of text

- Looks blurry if zooming in and out

Different ways of rendering text

SDF atlas: Using the vector information for the characters in the font,
generate a SDF for each letter, such that any pixel inside the font
outline is positive and distance falls off for pixels outside the font
outline.

- Looks good at a much wider range of sizes
- Can use distance information to create outlines of various widths

- Can use distance information to define more sophisticated texturing
strategies

- Not 100% perfect - Can still create some artifacts if too large/small

Different ways of rendering text

Vector atlas: Using the mathematical functions (bezier curves + lines)
that define each character in the font, generate a texture that stores all
of this data, as well as a complex indexing scheme to access these
functions.

- Looks PDF perfect
- Handles all vector graphics, emoijis, SVGs, etc.
- Complex to get right

- Only solution is commercial (http://sluglibrary.com), doesn’t have a
Javascript/WebGL version yet (although there is a published paper
about the technique which could probably be re-implemented for
the web)

Font atlas

RO '3 s
é% Qév i%%&;ii{

L

otiu"n
o= LT
*l 0 a0 -

osﬁ&.

SDF atlas

SDF for rendering text

Overview:

https://blog.mapbox.com/drawing-text-with-signed-distance-fields-in-
mapbox-gl-b0933af61817

Demo:
https://mapbox.s3.amazonaws.com/kkaefer/sdf/index.html

Source:
view-source:https://mapbox.s3.amazonaws.com/kkaefer/sdf/index.html

3D Signed distance functions (SDF)

https://www.shadertoy.com/view/Xds3zN

3D Signed dlstance functions (SDF)

\q

ew/lsf32r a‘?

%
w/material/nv:

Midterm review

Concepts:

- Rendering pipeline
- Lighting

- Texturing

- Render-to-texture

Midterm review

Code:

- Vertex & fragment shaders

- GLSL data types (attribute, uniform, varying)
- Environment mapping (reflection)

- Offscreen buffers

- Vertex displacement

- Point sprites

- Height maps

Next week

Midterm on Tuesday!

Raymarching 3D objects
Shading 3D SDFs
Morphing between SDFs

Game Graphics & Real-time Rendering
CMPM 163, W2018

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Lucas Ferreira (TA)
Iferreira@ucsc.edu

creativecoding.soe.ucsc.edu/courses/cmpm163
github.com/CreativeCodinglLab

