
Game Graphics & Real-time Rendering
CMPM 163, W2018

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Lucas Ferreira (TA)
lferreira@ucsc.edu

creativecoding.soe.ucsc.edu/courses/cmpm163
github.com/CreativeCodingLab



Last week
- Looked at how to track mouse points in a fragment shader, and 

how to find the distance between a fragment and that point
- Showed how to use a texture as a height map in a vertex 

displacement shader
- Introduced Perlin noise to generate naturalistic dynamic textures 

and meshes
- Looked at how to use point sprites in Three.js and to texture 

them using a fragment shader
- Introduced particle systems & the dat.gui library
- https://creativecoding.soe.ucsc.edu/courses/cmpm163/code/wee

k3_codeExamples.zip
- https://creativecoding.soe.ucsc.edu/courses/cmpm163/code/wee

k4_codeExamples.zip



This week

- Homework #2 introduced – Due Feb. 18th at 12noon

- Voronoi cells, redux
- Drawing 2D shapes using signed distance functions (SDFs)
- Drawing nice looking text using SDFs
- Raymarching 3D objects 
- Shading 3D SDFs
- Morphing between SDFs
- https://creativecoding.soe.ucsc.edu/courses/cmpm163/code/wee

k5_codeExamples.zip



Homework 2

- Homework #2 introduced – Due Feb. 18th at 12noon

- Design two scenes:

1) Outdoor scene using cube map, height map, textures
2) Abstract scene using noise functions and particle systems

- Some points given for creativity, beauty, composition.
- Extra credit given for additional functionality (textured point 

sprites, reflection+refractive effects) 



This week

- Homework #2 introduced – Due Feb. 18th at 12noon

- Voronoi cells, redux
- Drawing 2D shapes using signed distance functions (SDFs)
- Drawing nice looking text using SDFs

- Midterm review

- https://creativecoding.soe.ucsc.edu/courses/cmpm163/code/wee
k5_codeExamples.zip



Voronoi tesselation
Given a set of points {p1, …, pn} on a 2D plane, a Voronoi cell is 
defined for each point pk where the distance to pk is less than the 
distance to any other cell pj.

















Voronoi tesselation
- In fragment shader, we are able to determine the geometry 

without passing in any vertices to the vertex shader (other than 
those that define the fullscreen quad).

- That is, we let each pixel in the fragment shader determine 
whether or not it is part of a shape defined by some function. 
(see iquilezles.org/www/articles/voronoilines/voronoilines.htm for a discussion 
on how to calculate cell borders accurately.) 

- We can extend this idea to draw arbitrary shapes: 
https://www.shadertoy.com/view/4dfXDn



Signed distance functions (SDF)
float circleDist(vec2 p, float radius) {

return length(p) - radius;
}

Ex:
p = vec2(200.0,0.0);
radius = 100.0;

return value > 0.0; //is outside the circle



Signed distance functions (SDF)
float circleDist(vec2 p, float radius) {

return length(p) - radius;
}

Ex:
p = vec2(25.0,25.0);
radius = 40.0;

return value < 0.0; //is inside the circle



Signed distance functions (SDF)
float circleDist(vec2 p, float radius) {

return length(p) - radius;
}

Ex:
p = vec2(0.0,-100.0);
radius = 100.0;

return value = 0.0; //is on the circle’s edge



2D Signed distance functions (SDF)
https://www.shadertoy.com/view/4dfXDn



Different ways of rendering text
HTML: overlay a div on top of the webGL canvas and draw with normal 
html
- Can’t do anything super fancy with the text, not part of OpenGL 

pipeline

Font atlas: store each letter onto an image, keep track of the texture 
coords for each letter, use those texture coords to decal a rectangle
- Good for overlaying on top of scene, can use color info to find 

edges or update colors inside or outside of text
- Looks blurry if zooming in and out 



Different ways of rendering text
SDF atlas: Using the vector information for the characters in the font, 
generate a SDF for each letter, such that any pixel inside the font 
outline is positive and distance falls off for pixels outside the font 
outline. 

- Looks good at a much wider range of sizes
- Can use distance information to create outlines of various widths
- Can use distance information to define more sophisticated texturing 

strategies
- Not 100% perfect - Can still create some artifacts if too large/small



Different ways of rendering text
Vector atlas: Using the mathematical functions (bezier curves + lines) 
that define each character in the font, generate a texture that stores all 
of this data, as well as a complex indexing scheme to access these 
functions.
- Looks PDF perfect
- Handles all vector graphics, emojis, SVGs, etc.
- Complex to get right
- Only solution is commercial (http://sluglibrary.com), doesn’t have a 

Javascript/WebGL version yet (although there is a published paper 
about the technique which could probably be re-implemented for 
the web)



Font atlas



SDF atlas



SDF for rendering text
Overview:
https://blog.mapbox.com/drawing-text-with-signed-distance-fields-in-
mapbox-gl-b0933af6f817

Demo:
https://mapbox.s3.amazonaws.com/kkaefer/sdf/index.html

Source: 
view-source:https://mapbox.s3.amazonaws.com/kkaefer/sdf/index.html



3D Signed distance functions (SDF)
https://www.shadertoy.com/view/Xds3zN



3D Signed distance functions (SDF)
www.shadertoy.com/view/lsf3zr
www.iquilezles.org/www/material/nvscene2008/rwwtt.pdf



Midterm review
Concepts:

- Rendering pipeline
- Lighting
- Texturing
- Render-to-texture



Midterm review
Code:

- Vertex & fragment shaders
- GLSL data types (attribute, uniform, varying)
- Environment mapping (reflection)
- Offscreen buffers
- Vertex displacement
- Point sprites
- Height maps



Next week

- Midterm on Tuesday!

- Raymarching 3D objects 
- Shading 3D SDFs
- Morphing between SDFs



Game Graphics & Real-time Rendering
CMPM 163, W2018

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Lucas Ferreira (TA)
lferreira@ucsc.edu

creativecoding.soe.ucsc.edu/courses/cmpm163
github.com/CreativeCodingLab


