
Game Graphics & Real-time Rendering
CMPM 163, S2019

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Manu Thomas (TA) David Abramov (TA)
mthomas6@ucsc.edu dabramov@ucsc.edu

Website: creativecoding.soe.ucsc.edu/courses/cmpm163_s19
Slack: https://ucsccmpm163.slack.com



Class information

Class website:
https://creativecoding.soe.ucsc.edu/courses/cmpm163_s19

Slack is the main form of class communication:
https://ucsccmpm163.slack.com

Our TAs are Manu Thomas and David Abramov
They will lead the lab sections starting next week



For Thursday
Download and explore Unity:
- Make sure you download and test Unity on your laptop or a lab 

computer: https://unity3d.com/get-unity/download (the stable 
version is “2018.3”, and we are using the “personal” version). 
Unity should work on any recent laptop or desktop, but runs 
better with a fast GPU. 

- Follow the introductory tutorials at: 
https://unity3d.com/learn/beginner-tutorials

- Get familiar with the Unity Manual: 
https://docs.unity3d.com/Manual/index.html



Setting up Unity
If you haven’t used it before, takes a little bit to get 
used to, but it simplifies a lot of the boilerplate related 
to setting up a new scene, etc.

It includes a ton of functionality, but we will start by 
looking at parts that let us control how particular 
objects are ”shaded”, or rendered to the screen.



3D Scene
In most graphics frameworks, a scene consists of:
- Cameras: A camera characterizes the extent of the 3D 

space that will be projected onto the 2D image plane
- Lights: Different positions, orientations, colors, and types 

of light are used to illuminate the scene
- Geometry: Objects made out of triangles populate the 

scene, and are lit by the different light source
- Materials: The objects in the scene can be characterized 

by different material properties that respond to light
- Textures: The objects can also have different textures, or 

images, placed on them



Perspective camera



Perspective camera



Rendering pipeline
The rendering pipeline describes the series of 
operations that transform your programmatically 
defined 3D scene into an actual 2D image.
This is done using shaders.
- Vertex shader: The vertex shader is responsible for 

turning 3D geometry into “normalized device 
coordinates” (2D values between -1 and +1, plus a 
depth value) 

- Fragment/pixel shader: The fragment shader is 
responsible for coloring in each of those pixels, and 
then outputting it on the 2D screen



In Unity, each shader program lives in its own function. At the start 
of an application, these files are compiled into a ”program” and 
copied over to the GPU, along with texture data. 
When the application is running, usually at 60fps, during each 
frame, the following step occur:
- 1. The shader program is activated on the GPU (“bound”)
- 2. Any texture data you will use is also bound (ie, made 

available to the shader)
- 3. 3D points describing your geometry are passed in to the 

GPU, and input into your vertex shader, one triangle at a time
- 4. The vertex shader projects the triangle into a simpler 

coordinate system and outputs it as “fragment,” or pixel data, 
which is input into the fragment shader

- 5. The fragment shader decides what color to make each pixel, 
and then draws it on the screen



Perspective camera



Rendering pipeline
Let’s look at a high level description of this process, 
using Unity. (Most graphics/game frameworks 
conceptualize this process similarly.)

This is done using shaders.
- Vertex shader: The vertex shader is responsible for 

turning 3D geometry into 2D pixels 
- Fragment/pixel shader: The fragment shader is 

responsible for coloring in each of those pixels



Unity shaders
The most basic vertex shader is called a “pass-through 
shader”

This vertex shader does only this:
It takes each triangle used to define your geometry 

and projects it into 2D, then passes this 2D data to the 
fragment shader. 

The most basic fragment shader simply gives each pixel 
a color value.



uniform: data that is static over the life of the binding – It will 
be the same for all geometry passed in the shader. Uniform 
variable are available to both the vertex and the fragment 
shader.
attribute: data that is defined per vertex for each geometry 
that is passed in with each mesh (i.e., position, normal, texture 
coordinates). Attribute data is only available in the vertex 
shader.
varying: this is how you link data from the vertex shader to 
the fragment shader.



A shader program in Unity looks a lot like a C program, with 
some differences in syntax.

In its “vert()” function, the vertex shader must return a 
variable (or a struct that contains this variable) of type 
SV_POSITION, which is used by the fragment shader 

In its “frag()” function, the fragment shader must return a 
variable of type fixed4, which defines the RGBA values for a 
pixel.

Let’s look at our shader programs… (see demo code)



Get code to run on your laptop
Customize the code (without breaking it!)
- Change the color values and see what happens for the 

Color shader
- Load in a new image instead of the default one for the 

Texture Shader 



Questions?
- Homework package #1 will be sent out on this weekend
- Lab sessions will start next week (led by Manu on 

Monday and David on Wednesday and Thursday)


