Intro to Unity Shaders

CM163 Lab 1

Rendering Pipeline

vertices transformed triangle fragments

SER— —>

Vertex Shader - Program that
transforms vertices in someway

Rasterizer - Turn the transformed
vertices to pixels on the screen

Fragment Shader - Program that
processed 0
fragments fragments process the pixels

Creating a 3D model

Object Space

Position of vertices are defined wrt to the center of this
coordinate space

@) = cube.obj v
f This file uses centimeters as units for non-parametric coordi

mtllib cube.mtl

g default
-0.500000 -0.500000 0.500000
0.500000 -0.500000 0.500000
-0.500000 0.500000 0.500000

persp

-0.500000 0.500000 -0.500000
0.500000 0.500000 -0.500000

\

\

\

v 0.500000 0.500000 0.500000

v

v

v —0.500000 -0.500000 -0.500000
\

0.500000 -0.500000 -0.500000
vt 0.375000 0.000000
vt 0.625000 0.000000
vt 0.375000 0.250000

Using any 3D modeling software such as blender or Maya

Importing to Unity

World Space

Position of 3D objects are defined wrt to this coordinate
space

How to transform vertices from object space to world space?

Model Matrix

Transform vertices from object space to world space
It's a 4x4 matrix which is defined by Unity when we load a 3D mesh

Performs translation, rotation and scaling in world space.

& Inspector Ep—

« [/ cube Static *
-l
Tag | Untagged + | Layer | Default

Model Open | Select Overrides

Vv ~ Transform
Position X 0 Y 0

Rotation X 0 YO Z0
Scale X1 Y (1 Zi 1

Add Component

Camera space

———— i Sp20¢

g

%

Position of 3D objects are defined wrt to camera
coordinate system

View Matrix

Transform vertices from world space to camera space

It's a 4x4 matrix which is defined by Unity when we create a Camera

Performs translation, rotation and scaling in view space.

+ 'Main Camera
-

Tag [MainCamera + | Layer | Default

Vv _~ Transform
Position

Rotation
Scale

Projection Space

c“ A
- ﬁr
NE

Perspective projection (P)

Projection Matrix

Transform vertices from camera space to a 2D space

It's a 4x4 matrix which is defined by Unity when we create a Camera

W Parallel Projection

A

Projectors

Projection)< Projection
Cenitar of plane T, / plane

projection projection
- at infinity

MVP (Model View Projection) Matrix

2. WORLD SPACE

PROJECTION MATRIX

3. VIEW SPACE 4. CLIP SPACE 5. SCREEN SPACE

Vertex * Model matrix * View Matrix * Projection Matrix

Vertex Shader

Program that transforms vertices in someway

Performs MVP operation

Other uses for vertex shaders:
Object deformation L% L ,
VerteX anlmatlon T . "’; q ™4 \ ‘ A 7 vertex array element array

{fo, 7,1},

Water ripples

Sending values to pixel shader
o Position
o Normal
o Color

Rendering Pipeline

vertices transformed triangle fragments

SER— —>

Vertex Shader - Program that
transforms vertices in someway

Rasterizer - Turn the transformed
vertices to pixels on the screen

Fragment Shader - Program that
processed 0
fragments fragments process the pixels

Rasterization

Fixed function - not programmable

The main function of a rasterizer is to find the pixels on the screen that is covered
by the triangles

It also interpolates the values sent by vertex shader:
Position

Normal

Color

Etc

@
b3
3
=
w
Q
-4
3
o
-
x
o
8
3

Rendering Pipeline

vertices transformed triangle fragments

SER— —>

Vertex Shader - Program that
transforms vertices in someway

Rasterizer - Turn the transformed
vertices to pixels on the screen

Fragment Shader - Program that
processed 0
fragments fragments process the pixels

Fragment Shader

Program that process the pixels

Mainly used for light calculations and computing pixel colors

Unity Shader

ShaderLab + CG/HLSL

ShaderLab provides an interface between Unity and Shader code

CG/HLSL - C for graphics / High level shader language

Unity Shader from scratch

/l ShaderLab
"CM163/FirstShader"
Shader “directory/shader name”

Properties

/[Properties

Input for the shader set by the user in

{ o
_Color(Y= (1111) the material inspector

/I Variable name (label, data type) = default value

}

Properties
{
r*, Int) = 1

_Float ("Float", Float) = 1.0
Vectord (" tor4", Vector) = (1,1,1,1)
Color (“Color", Color) = (1,1,1,1)
Range ("Range", Range(2,1)) = 0.5
20Tex (“2d Tex", 2D) = "defaulttexture"
CubeTex ("Cube :
_3DTex ("3d Tex"

SubShader

"CM163/FirstShader" /[l Sub Shader

Unity shader can have different sub

{ .

Golor™My Custom Color® Color) = (1 11 1) shaders to support different hardware
} features
{ For eg: one subshader for iPhone and

} another one for Playstation

Passes

{
}

{

"CM163/FirstShader"

_Color("My Custom Color"

)

(1111)

/| Passes

Each SubShader can have multiple
render passes

Each pass will have a vertex shader
and a pixel shader

One pass is one drawcall
Depth Pass

Lighting Pass
Post-processing Pass

CG

"CM163/FirstShader" /I CGPROGRAM

This is where we write our shader code

Defining vertex and fragment shader functions

"CM163/FirstShader" Pragma is a compiler directive

Vertex/Fragment is the command

vertex vert
fragment frag

Vert and Frag are the name of the
} functions

Getting data from Unity world in Shader world

"CM163/FirstShader" Struct “name”’
{
Position
{ Normal
Color
. TexCoords
etc

vertexj

VertexShaderlnput }

Getting data from Vertex Shader in Frag Shader

"CM163/FirstShader"

vertex vert
fragment frag

VertexShaderlnput

vertex:

VertexShaderOutput

pos:

Struct “name”’

{

Position
Normal
Color
TexCoords
etc

Vertex Shader

"CM163/FirstShader” Return type is VertexShaderOutput

‘v’ holds the input data coming from
Unity

vertex vert
fragment frag

Here we do Model View Projection

VertexShaderOutput vert(VertexShaderlnput v)
{

VertexShaderOutput o;
0.pos = mul(UNITY_MATRIX_MVP, v.vertex);

return o;

}

Fragment Shader

"CM163/FirstShader" Return type is float4

‘" holds the input data coming from the
vertex shader

vertex vert
fragment frag

Return value is a color

float4 frag(VertexShaderOutput i):SV_TARGET

{
return float4(1, 0, 0, 1);

}

Getting color from Unity

"CM163/FirstShader" Define a uniform with same name as
defined in properties

vertex vert
fragment frag
_Color;

float4 frag(VertexShaderOutput i):SV_TARGET
{

return _Color;

}

