
Game Graphics & Real-time Rendering
CMPM 163, S2019

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Manu Thomas (TA) David Abramov (TA)
mthomas6@ucsc.edu dabramov@ucsc.edu

Website: creativecoding.soe.ucsc.edu/courses/cmpm163_s19
Slack: https://ucsccmpm163.slack.com



Class information

Class website:
https://creativecoding.soe.ucsc.edu/courses/cmpm163_s19

Slack is the main form of class communication:
https://ucsccmpm163.slack.com

Our TAs are Manu Thomas and David Abramov
They will lead the lab sections starting next week



uniform: data that is static over the life of the binding – It 
will be the same for all geometry passed in the shader. Unity 
defines many built-in uniforms via the "UnityCG.cginc" 
include within the shader. Uniform variables are available to 
both the vertex and the fragment shader.

See https://docs.unity3d.com/Manual/SL-
UnityShaderVariables.html for the list of built-in uniform 
variables.



You can define your own uniforms within the Properties 
block and the top of the Unity shader program:
Properties
{ 
_MyCustomUniformVar (”MyFloatVal", Float) = 10
}
And then making sure to define a uniform in the Pass (where 
the vertex and fragment shader code is placed

uniform float _ MyCustomUniformVar;

(see any of the demos for Week2 for examples)



Properties
{ 
_MyCustomUniformVar ("MyFloatVal ", Float) = 10
}
This code adds an editable field that expects a float value 
(here, titled MyFloatVal, but it could be named anything you 
want) to the inspector when you select the shader from 
within Unity. 

uniform float _ MyCustomUniformVar;
This line sets up a datalink from Unity to the shader 
program and allows you to access that value from within 
your vertex shader or fragment shader



attribute: data that is defined per vertex for each geometry 
object that you pass in (i.e., position, normal, texture 
coordinates). Unity defines most of this for you 
automatically. 
You specify what attribute data you need using a special 
structure called “appdata”. This is how it commonly looks:
struct appdata
{
float4 vertex : POSITION;
float3 normal: NORMAL;
float2 uv : TEXCOORD0;
};
These attribute variables are then directly available in the 
vertex shader.



varying: this is how you link data from the vertex shader to the fragment shader. 
Varying data passed into the fragment shader is automatically interpolated across the 
triangle. E.g., the values for a pixel at the very center of a triangle would be an 
average of the values at the vertices. 

You define the varying data with a struct, and make sure that your vertex shader 
outputs this struct.

struct v2f {
float4 vertex : SV_POSITION;
float3 normal : NORMAL;

}; 
v2f vert (appdata v) {

v2f o; 
// do stuff…
return o;

}
fixed4 frag (v2f i) : SV_Target {

//do stuff…
return float4(1,0,0,1); //or whatever you want the color to be

} 



Phong Lighting in a Unity shader
A commonly used shader is called a “Phong shader,” named 
after Bui Tuong Phong, a computer scientist who studied at 
University of Utah (where much of computer graphics was 
invented). It approximates ambient, diffuse, and specular
lighting. 

As before, it takes each triangle used to define your geometry 
and projects it into 2D, then passes this 2D data to the 
fragment shader. 

But each triangle is colored depending on the interaction 
between: the camera orientation, the surface normal, and the 
light position



Phong shading
As before, this shader it takes each triangle used to define your 
geometry and projects it into 2D, then passes this 2D data to 
the fragment shader. 

But each triangle is then colored depending on the interaction 
between: the camera orientation, the surface normal, and the 
light position.
- The camera position and orientation is defined by your 

renderer
- The surface normal is created automatically by Blender, or 

any modeling software will also create these for you
- The point light position is placed by you in Unity and 

automatically passed into the shader program



Blinn-Phong lighting



Phong shading
In the diagram above, the curved arc represents some 
mesh in your scene, and the vectors are emanating from a 
particular pixel within a particular triangle of that mesh.

The V (for view) vector points to the camera
The L (for light) vector points to a point light
The N (for normal) is the surface normal at the pixel
The H (for half) is a vector halfway between the V an L 
vectors, and is used to calculate specular highlights



Phong shading
In Demo code (adapted from The CG Tutorial, linked to on 
the class website), lighting is calculated ”per-pixel” (in the 
fragment shader), in world coordinates. 

Remember, the vertex shader is responsible for taking 
vertex in 3D coordinates into 2D coordinates. A 
coordinate system defines the objects in the scene 
according to a particular origin, and you can ”transform” 
from one coordinate system to another using matrix 
multiplication. 



Phong shading
The vertex shader is REQUIRED to transform the vertices into “clip” 
space, which can be done with the following Unity function:
o.vertex = UnityObjectToClipPos(xyz); 
(see https://docs.unity3d.com/Manual/SL-BuiltinFunctions.html for Unity’s 
built-in shader functions)

But we also can perform other transformations and pass them into the 
fragment shader: 
o.vertexInWorldCoords = mul(unity_ObjectToWorld, v.vertex);

(unity_ObjectToWorld is a built-in matrix provided by Unity)

This transforms the vertex into “world” coordinates, and places it into the 
structure containing the varying data, which is then available to the 
fragment shader



Phong shading
Now we can set up all of the vectors needed for lighting calculations 
in world space within the fragment shader:

fixed4 frag(v2f i) : SV_Target {
float3 P = i.vertexInWorldCoords.xyz;
float3 N = normalize(i.normal);
float3 V = normalize(_WorldSpaceCameraPos - P);
float3 L = normalize(_WorldSpaceLightPos0.xyz - P);
float3 H = normalize(L + V); 
//do diffuse and specular lighting calculations …

}
(_WorldSpaceCameraPos and _WorldSpaceLightPos0 are provided 
automatically by Unity). See the phongDemo in the week2 code 
demos (available on the class website).


