Intro to textures and lighting
CM163 Lab 2

Today’s Lab

e Texture mapping

e Basic lighting models
o Flat shading
o Gouraud shading
o Phong Shading

Texture Mapping

e Texture Coordinate (UV space)
e GoesfromOto 1
e Every vertex of a mesh has a location in this UV space

= S,
A §\
\\f/ '\Q
T LY
$ B
h
I
|
L A o B
h o
|| F,
A = ¢
T
Ry - 7 «//

Basic Lighting Model

surfaceColor = emissive + ambient + diffuse + specular

Object Surface

emissive = Ke

where:

® K, is the material's emissive color.

Basic Lighting Model

surfaceColor = emissive + ambient + diffuse + specular

ambient = K53 x globalAmbient

where:

e K5 is the material's ambient reflectance and

e globalAmbient is the color of the incoming ambient light.
Object Surface Object Surface

Ambient - Natural Light inside a scene. For example sun

Basic Lighting Model

surfaceColor = emissive + ambient + diffuse + specular

@ diffuse = K4 x lightColor x max(N - L, 0)

where:

" e Kq is the material's diffuse color,
e JightColor is the color of the incoming diffuse light,
e N is the normalized surface normal,

i N o e [is the normalized vector toward the light source, and
Diffuse Object (Magnified) ¢ P is the point being shaded.

Diffuse - Reflects light equally in all directions. Only depend on the
normal and light vector

Basic Lighting Model

surfaceColor = emissive + ambient + diffuse + specular

specular = Ks x lightColor x facing x (max(N - H, 0)) shininess

. . Reflected Specular Light :
lncomlng nght & 9 e K is the material's specular color,

\ ® lightColor is the color of the incoming specular light,

‘ e N is the normalized surface normal,
‘ e Vis the normalized vector toward the viewpoint,
e [is the normalized vector toward the light source,
e H is the normalized vector that is halfway between V and L,
e P is the point being shaded, and
e facing is 1 if N - L is greater than 0, and 0 otherwise.

[4

Object Surface Object Surface

Specular - Reflects light around the mirror direction. Depends on
the viewer. H vector is used for better specular approximation

Basic Lighting Model

surfaceColor = emissive + ambient + diffuse + specular

o ™ —.
_J,J __;_. — :5' 3
61 61 61 {

Ambient Diffuse Specular Combined

Flat Shading

/ ; SMOOTH SHADED

= ‘> E . ®

®

Shading one color per triangle in a mesh

FLAT SHADED

Gouraud Shading

.

Light Calculation is done in the vertex shader for each vertex and interpolated via
rasterizer. Cheaper to compute but poor specular highlights

Phong Shading

L e

Gouraud Phong

Light Calculation is done in the fragment shader for each pixel using interpolated
normals

Ambient Component

float 3 Ka = float3(1, 1, 1);

float3 globalAmbient = float3(0.2, 0.2, 0.2); where:

) .) e K5 is the material's ambient reflectance and
float3 ambientComponent = Ka * globalAmbient; e globalAmbient is the color of the incoming ambient light.

Diffuse Component

diffuse = Ky x lightColor x max(N - L, 0)

float3 P = i.vertinWorldCoords.xyz; where:

e K4 is the material's diffuse color,

e JightColor is the color of the incoming diffuse light,

e /N is the normalized surface normal,

float3 L = normalize(_WorldSpaceLightPos0.xyz - P); e L is the normalized vector toward the light source, and
e P is the point being shaded.

float3 N = normalize(i.normal);

float3 Kd = _Color.rgb;
float3 lightColor = _LightColor0.rgb;

float3 diffuseComponent = Kd * lightColor * max(dot(N,L), 0);

|

Specular Component

here:

® K is the material's specular color,

e JightColor is the color of the incoming specular light,
e N is the normalized surface normal,

e Vis the normalized vector toward the viewpoint,

e [is the normalized vector toward the light source,

float3 Ks = Specu|arCo|or.rgb- e H is the normalized vector that is halfway between V and L,
= ’ e P is the point being shaded, and

e facing is 1 if N - L is greater than 0, and 0 otherwise.

float3 V = normalize(_WorldSpaceCameraPos - P);

float3 H = normalize(L + V);

float3 specularComponent = Ks * lightColor * pow(max(dot(N, H), 0), _Shininess);

