
Intro to textures and lighting
CM163 Lab 2

Today’s Lab
● Texture mapping
● Basic lighting models

○ Flat shading
○ Gouraud shading
○ Phong Shading

Texture Mapping
● Texture Coordinate (UV space)
● Goes from 0 to 1
● Every vertex of a mesh has a location in this UV space

Basic Lighting Model

surfaceColor = emissive + ambient + diffuse + specular

Basic Lighting Model

surfaceColor = emissive + ambient + diffuse + specular

Ambient - Natural Light inside a scene. For example sun

UNITY_LIGHTMODEL_AMBIENT

Basic Lighting Model

surfaceColor = emissive + ambient + diffuse + specular

Diffuse - Reflects light equally in all directions. Only depend on the
normal and light vector

Basic Lighting Model

surfaceColor = emissive + ambient + diffuse + specular

Specular - Reflects light around the mirror direction. Depends on
the viewer. H vector is used for better specular approximation

Basic Lighting Model

surfaceColor = emissive + ambient + diffuse + specular

Flat Shading

Shading one color per triangle in a mesh

Gouraud Shading

Light Calculation is done in the vertex shader for each vertex and interpolated via
rasterizer. Cheaper to compute but poor specular highlights

Phong Shading

Light Calculation is done in the fragment shader for each pixel using interpolated
normals

Gouraud Phong

Ambient Component

 float 3 Ka = float3(1, 1, 1);
 float3 globalAmbient = float3(0.2, 0.2, 0.2);

 float3 ambientComponent = Ka * globalAmbient;

Diffuse Component

float3 P = i.vertInWorldCoords.xyz;

float3 N = normalize(i.normal);

float3 L = normalize(_WorldSpaceLightPos0.xyz - P);

float3 Kd = _Color.rgb;

float3 lightColor = _LightColor0.rgb;

float3 diffuseComponent = Kd * lightColor * max(dot(N,L), 0);

Specular Component

float3 Ks = _SpecularColor.rgb;

float3 V = normalize(_WorldSpaceCameraPos - P);

float3 H = normalize(L + V);

float3 specularComponent = Ks * lightColor * pow(max(dot(N, H), 0), _Shininess);

