
Game Graphics & Real-time Rendering
CMPM 163, S2019

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Manu Thomas (TA) David Abramov (TA)
mthomas6@ucsc.edu dabramov@ucsc.edu

Website: creativecoding.soe.ucsc.edu/courses/cmpm163_s19
Slack: https://ucsccmpm163.slack.com



Querying neighbors
- Conceptually, all fragments are processed simultaneously. 

Thus, when the fragment shader is in the midst of 
processing one pixel, it can not directly get information 
about any of the other fragments.

- However, in the fragment shader, if we are passing in a 
texture, then we can easily query the neighboring pixels in 
the texture (also called “texels”), as long as we know the 
width and height of the texture. 

- This info is provided automatically by Unity as a special 
uniform float4 called _MainTex_TexelSize, where .x = 
1.0/width, .y = 1.0/height, .z = width, and .w = height



Querying neighbors
- Or in general, as a special uniform float4 

called _[NAME]_TexelSize, where [NAME]
is the name of the property that defines
any texture. 



Querying neighbor
_MyTex("Texture", 2D) = "white" {}

uniform sampler2D _MyTex;
uniform float4 _MyTex_TexelSize; 

//blur current pixel with pixel to the left
fixed4 frag(v2f i) : SV_Target {

float2 t = float2(MyTex_TexelSize.x, _MyTex_TexelSize.y);
float4 currentVal =  tex2D( _MyTex, i.uv );
float4 leftVal = tex2D( _MyTex, float2(i.uv.x - t.x, i.uv.y ) );
return lerp(currentVal, leftVal, 0.5);

}



Render to texture
A very powerful technique used to create a wide range of visual effects 
is to render the output of a shader program to an off-screen buffer (also 
called a “frame buffer object” or “FBO” or “RenderTexture”) rather than 
to the display. You can use this buffer to apply multiple rendering passes 
to your scene (or parts of your scene).



Render to texture
Renderer r = GetComponent<Renderer>(); 
//existing texture
Texture2D inputTex = Resources.Load<Texture2D>("Textures/t01"); 
//define off screen buffer to hold color data
RenderTexture rt = new RenderTexture(w, h, depthBits, RenderTextureFormat.RGBA32);
//set active shader
r.material.shader = myShader;
//execute myShader with access to inputTex, store output in a RenderTexture named rt
Graphics.Blit(inputTex, rt, r.material);
//create new empty texture to hold color data
Texture2D newTex= new Texture2D(w, h, TextureFormat.ARGB32, false); 
//copy offscreen buffer into this texture, which can now be used for another shader pass
Graphics.CopyTexture(rt, newTex); 



Examples
- An in-game “Security Camera”

Output of camera is written to a texture, which is then used to 
decal a GameObject (lots of tutorials online, eg:
https://www.youtube.com/watch?v=EdFg1NSVuQY
https://www.youtube.com/watch?v=I3TE0hCw4Vg

- Cellular Automata or Conway’s Game of Life 
“Ping-ponging” of texture data is used to compute an 
emergent system by querying neighbor texels

- Reaction-Diffusion system
Uses floating point textures and ping-ponging technique to 
create a simulation how a chemical substance spreads 
throughout a medium and reacts to other substances





“Ping pong” textures
- Building off of the render to texture example, we can use our shaders

to perform general computation using our texture data.
- Within HLSL, textures are read-only, and we can’t write directly to our 

input textures, we can only “sample” them. 
- Using the render to texture target, however, we can use the output of 

the shader itself to write to a texture. 
- Then, if we can chain together multiple rendering passes, the output of 

one rendering pass becomes the input for the next pass.
- In the ping-pong technique, we create a kind of simple ring buffer, 

where after every frame we swap the off-screen buffer that is being 
read from with the off-screen buffer that is being written to.

- We can then use the off-screen buffer that was just written to, and 
display that to the screen.



“Ping pong” textures
- We can then use the off-screen buffer that was just written to, and 

display that to the screen.
- This provides with a way to perform iterative computation on the GPU, 

which is useful for simulating a range of effects, such as smoke, water, 
clouds, fire, etc. (which we’ll explore in the coming weeks).

- In the Cellular Automata example, I show how we can use this 
technique to make a GPU version of Conway’s Game of Life: 
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

- The Game of Life is a simple simulation that shows how even very 
simple rules can give rise to interesting, complex, emergent behaviors.



Game of Life
The universe of the Game of Life is an infinite two-
dimensional orthogonal grid of square cells, each of which is in one of two 
possible states, alive or dead, or "populated" or "unpopulated". Every cell 
interacts with its eight neighbours, which are the cells that are 
horizontally, vertically, or diagonally adjacent. At each step in time, the 
following transitions occur:
- Any live cell with fewer than two live neighbors dies, as if caused by 
underpopulation.
- Any live cell with two or three live neighbours lives on to the next generation.
- Any live cell with more than three live neighbours dies, as if by overpopulation.
- Any dead cell with exactly three live neighbours becomes a live cell, as if by 
reproduction.



Game of Life



Game of Life
The universe of the Game of Life is an infinite two-
dimensional orthogonal grid of square cells, each of which is in one of two 
possible states, alive or dead, or "populated" or "unpopulated". Every cell 
interacts with its eight neighbours, which are the cells that are 
horizontally, vertically, or diagonally adjacent. At each step in time, the 
following transitions occur:
- Any live cell with fewer than two live neighbors dies, as if caused by 
underpopulation.
- Any live cell with two or three live neighbours lives on to the next generation.
- Any live cell with more than three live neighbours dies, as if by overpopulation.
- Any dead cell with exactly three live neighbours becomes a live cell, as if by 
reproduction.



Unity Texture manipulation
SetPixels, GetPixels (CPU, slow)

Puts data into or retrieves data from the Texture. The texture data must be 
available on the CPU in order to be retrieves. The texture data needs to be 
uploaded to the GPU in order to be rendered & used by shaders, etc.
Apply (CPU --> GPU, slow)

Copy data from the CPU to the GPU
CopyTexture (GPU, fast)

Moves Texture data from one Texture into another
ReadPixels (GPU --> CPU, slow)

Copies texture data from the GPU to the CPU 
Blit (GPU, fast)

Triggers rendering into an off-screen buffer (a RenderTexture)



Texture formats
There are LOTS of different formats for texture data. (See 
https://docs.unity3d.com/ScriptReference/TextureFormat.html)

In this class we will mainly be using RGBA32, which is used for color. Each
channel (red, green, blue, alpha) stores a 8-bit integer (0 – 255). For some of 
the simulations we will use RGBAFloat, which gives us full precision floating 
point decimals for each of the four channels. On the GPU itself, data is stored
as a big 1D array, and the TextureFormat tells our shader how to access that 
array.

Other formats are used for depth information (which will discuss next class), 
compression, for HDR colors, and to support a range of video formats, etc.
Ultimately, we need to display to the screen, which expects 8-bit RGBA values.



Reaction-Diffusion
“Reaction–diffusion systems are mathematical models which correspond to 
several physical phenomena: the most common is the change in space and 
time of the concentration of one or more chemical substances: 
local chemical reactions in which the substances are transformed into each 
other, and diffusion which causes the substances to spread out over a 
surface in space.
Reaction–diffusion systems are naturally applied in chemistry. However, 
the system can also describe dynamical processes of non-chemical nature. 
Examples are found in biology, geology and physics (neutron diffusion 
theory) and ecology.”



Karl Sims












