Acceleration Algorithms in
Computer Graphics

Ivan Xu
Alfred Lam

How can we
render hundreds
of millions of
triangles in real
time?

3DViewStation WebViev. X

V & (&) ‘ @ Sicher “—]

Apps WV vsweb WV Beta WebViewerKistersde ¥ Google Maps |7] Viewerkistersde LV] 3DViewStation.com WV Dev |
Start Document View Measurement

Analyze | Transformation Tools Model

7- %% 0o 0 T &

& source data provided by and used with permission of the Boeing Company,
nal o Quick Exact Draft Projected Wall Physical g '
Normal angie e thickness | propertes http//www.3dviewstation.com, hitp:/viewer kisters de
Section Compare Draft angle Projected Heat map Compute

Views _ (= 0_V2017.1.models\Boeing777_Sub34679_400kp.171.3dvs

Geem®

L4 @ [Boeing777_Sub34679_400kp 171
P @ W C284W8123502-AD-2V1.0b)
284W8140S02-BD-2V1.0b]
284W8182S01--D-1V1.0bj
P @ W’ C284W8182502-D-2V1.0bj
P @ W C284W8400S04~-D-4V1,0bj

(R O) 00

COOFAAT"

View Measurement Analyze

Transformatio

< [a

Grid
BSP

Quadtree/Octree

Efficiently locate objects by storing them in a data structure Kd—tree
organized by their positions

Grid

e The most naive but commonly used
structure (square, rect, hex...)

o Simpler
o Constant Memory usage

o Faster to update

Binary Space Partitioning

It handles empty space more
efficiently

densely populated areas more
efficiently

O(log(N))

N:

Ua
07 ~ \ "I l||

B A - 2o

@ e

0: 0O

c
53 &
a b

bsp tree(poly* current poly)
{

while(still polygons)

{

partition polygons (current poly);
}

bsp tree(current poly->left);
bsp tree(current poly->right);
}

traverse tree(bsp tree* tree,point eye)
{

location = tree->find location (eye);

if (tree->empty())
return;

if (location > 0)
location

{

// if eye infront of

traverse tree (tree->back,eye);
display(tree->polygon list);
traverse tree(tree->front,eye);
}
else if(location < 0) // eye behind location
{
traverse tree(tree->front,eye);
display(tree->polygon list);
travers tree(tree->back,eye);
}
else // eye coincidental
with partition hyperplane
{
traverse tree(tree->front,eye);
traverse tree(tree->back,eye);

Quadtree

0 127
0 . O
C
N A
. . (40,45)
D
° C D
B T (70, 10) (69,50)
E ®
E|] |F
(55,80)(80, 90)

127
(b)

Quadtree

To update objects:

e remove and re-insert

Octree

\
\
\ {
ML
\ 1)
rg—rlv‘r"f .
\ \\ -
i\
e
A1
\ \ ¥
\ 1
¥ | ¥
\ -t
\ Lyl
\ \ ~ -
|
Yl
‘y" |
\ | i
\\

K-d Tree

Bentley, Jon Louis. "Multidimensional binary search trees used for associative
searching.” Communications of the ACM 18.9 (1975): 509-517.

@
(70,70)
L —
(3545)
30,40)
]
50,30)

K-d Tree

FindMin(x-dimension):

@
(35,90)
@ (60,80
® ()
(51,75)
‘(70,70)
(50,50).
(25,40)
@(10,30)
@ (1,10)
@ (55,1)

Bounding Volume
Hierarchies (BVH)

|
e Utilize bounding volumes of space to

detect intersection with ray

e Simpler shapes (spheres, AABB
boxes) make for faster intersection S orerme
detection

[]

Can also be used for collision
detection and culling later on

R

\
|
|
|
5
)
0

o

v
VA

http://www.youtube.com/watch?v=rM-BVsdi8c4

Culling Algorithms

Culling

o “The fastest triangle to render is the
one never sent to the GPU”

e Happens per object not per polygon

e The earlier in the rendering process it
is done, the better the performance
improvements

Distance Culling

4 Cull Distance Volume

. . 4 Cull Distances 3 Array elements + a!
e Simplest form of culling 5 @
40 2 members
e Check if an object is close enough to Size
the viewpoint Cull Distance 800.0

2 members

e Remove it if not St
Cull Distance 1600.0

e (Can set max/min distance culling
2 members

based on object size in Unreal Engine
Size
Cull Distance

Enabled

View Frustum Culling

e Remove objects that are not within

the field of view FRUSTUM CULLING

e (Can use spatial data structures like
bounding volume hierarchies to test
for intersection with view frustum

e If bounding volume is entirely inside
frustum, then everything inside is
rendered.

e If bounding volume intersects the

frustum, continue testing its
children

Back Face Culling

e Remove triangles facing away from
the viewer

e Determine face direction by taking dot
product of vector from triangle to
viewpoint, and the triangle’s normal
vector - if dot product is negative, it is
facing away

e Often just a switch that can be turned
on/off in GPUs today -
“olEnable(GL_CULL_FACE)”

Occlusion Culling

The most computationally expensive
(checks visibility of every object), so
done last in the pipeline

Occlusion highly dependent on order
of drawn objects as well as distance
from viewpoint to object - “a
matchbox can obscure the Golden
Gate Bridge if it’s close enough”

OcclusionCullingAlgorithm(G)
Opr =empty
P =empty
for each object g€ G
if(isOccluded(g,0OR))
Skip(g)
else
Render(g)
Add(g, P)
if(LargeEnough(P))
Update(Og, P)
P =empty
end
end
end

Occlusion Culling can be extremely effective, but it
comes at a cost.

Gizmos ~

Cache Optimization

Caches and Memory

CPU Core

L1 Cache (on
chip, banked)

L2 Cache Unified

L3 Cache (Unified)

Main Memory

Locality

Temporal locality

o

(@]

If an item has been referenced recently, it
will probably be accessed again soon

P-X*p.X + p.Y*P.Y ;

(P-X = g.X)
(P.y - 9.Y)

N

~o

Spatial locality

O

If an item has been referenced recently,
nearby items will tend to be referenced soon

for (i=0; i<N; i++)

a[il= ..

Example: Matrix Multiplication

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where
b=n/ N is called the block size

fori=1toN
forj=1toN

{read block C(i,j) into fast memory}

fork=1to N
{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

C(ij) C(i) Ali k)

]
+

m Bk

1%

How Unity exploit Caches

e [intity Component System
o Data-Oriented Tech Stack

How Unity exploit Caches

e Traditional: Game object
and components is “Has-a” Bullet

Plaver
Mem
. ofy Data g:met Renderer Data g:me ~rate Behavior Data
(Simplified) ject | || Object |
= 1_:____\ == 5 _H
j—" \‘-._ _.-‘/\ i
i =1 P [\
Behavior /‘4 ~ Data \Rigidbady (%~ Dats ™ Behavior- | Data \ Data Transform Data Data
\ | ot kY
/, "\ “--____’ \
.". '.'. - .".
B 4 - Y
Behavior Dty Translerm Data Data Data Renderer Data Rigsdbady Dat

Transforms (Classic)
Memory, Divided by Cache Lines

How —

L]

640 bytes on 4 Transforms, 128 bytes wasted, 1,920 bytes on unused cache lines

DataNeededToMove (Entity Component System)
Memory, Divided by Cache Lines

__ I

11,875 bytes on AIMovementData, 14 bytes wasted, 64 bytes on unused cache lines

DataNeededToMove - 25 bytes Wasted Memory & Access Time

Transform - ~160 bytes Cache Line - 64 bytes

an

Al

¥ PHES1CS

PHYSLS

PHYSILS

PHTSICS

REMDER

REDER

RESDER

RESDEL

How Unity exploit Caches

C, Mac & Linux Standialone <OX11>

What can we do
with these
acceleration
algorithms?

Conclusion

Acceleration algorithms are and will continue to be a core part of the rendering
process, despite faster and faster GPUs. They enable us to render many times more
complex scenes in real time, without having to change the underlying hardware or
rendering pipeline. They’re also just some pretty cool algorithms that are fun to
learn and implement - and they require knowledge of how rendering as well as the
cache/memory hardware works to implement effectively.

Resources

https://web.cs.wpi.edu/~matt/courses/cs563/talks/bsp/document.html

Real-Time Rendering Book by Eric Haines, Natty Hoffman, Tomas Moller

https://sites.cs.ucsb.edu/~tyang/class/240a17/slides/Cache3.pdf

Game Design Patterns by Robert Nystrom

https://web.cs.wpi.edu/~matt/courses/cs563/talks/bsp/document.html
https://sites.cs.ucsb.edu/~tyang/class/240a17/slides/Cache3.pdf

