
Acceleration Algorithms in
Computer Graphics

Ivan Xu
Alfred Lam

How can we
render hundreds
of millions of
triangles in real
time?

Spatial
Partitions

Efficiently locate objects by storing them in a data structure
organized by their positions

Grid

BSP

Quadtree/Octree

Kd-tree

....

Grid
● The most naive but commonly used

structure (square, rect, hex...)

○ Simpler

○ Constant Memory usage

○ Faster to update

○ ...

Binary Space Partitioning
● It handles empty space more

efficiently

● densely populated areas more
efficiently

● O(log(N))

bsp_tree(poly* current_poly)
{
 while(still_polygons)
 {
 partition_polygons(current_poly);
 }
bsp_tree(current_poly->left);
bsp_tree(current_poly->right);
}

traverse_tree(bsp_tree* tree,point eye)
{
location = tree->find_location(eye);

if(tree->empty())
 return;

 if(location > 0) // if eye infront of
location
 {
 traverse_tree(tree->back,eye);
 display(tree->polygon_list);
 traverse_tree(tree->front,eye);
 }
 else if(location < 0) // eye behind location
 {
 traverse_tree(tree->front,eye);
 display(tree->polygon_list);
 travers_tree(tree->back,eye);
 }
 else // eye coincidental
with partition hyperplane
 {
 traverse_tree(tree->front,eye);
 traverse_tree(tree->back,eye);
 }
}

Quadtree

Quadtree
To update objects:

● remove and re-insert

Octree

K-d Tree
Bentley, Jon Louis. "Multidimensional binary search trees used for associative
searching." Communications of the ACM 18.9 (1975): 509-517.

K-d Tree

Bounding Volume
Hierarchies (BVH)

BVHs
● Utilize bounding volumes of space to

detect intersection with ray

● Simpler shapes (spheres, AABB
boxes) make for faster intersection
detection

● Can also be used for collision
detection and culling later on

http://www.youtube.com/watch?v=rM-BVsdi8c4

Culling Algorithms

Culling
● “The fastest triangle to render is the

one never sent to the GPU”

● Happens per object not per polygon

● The earlier in the rendering process it
is done, the better the performance
improvements

Distance Culling
● Simplest form of culling

● Check if an object is close enough to
the viewpoint

● Remove it if not

● Can set max/min distance culling
based on object size in Unreal Engine

View Frustum Culling
● Remove objects that are not within

the field of view

● Can use spatial data structures like
bounding volume hierarchies to test
for intersection with view frustum

● If bounding volume is entirely inside
frustum, then everything inside is
rendered.

● If bounding volume intersects the
frustum, continue testing its
children

Back Face Culling
● Remove triangles facing away from

the viewer

● Determine face direction by taking dot
product of vector from triangle to
viewpoint, and the triangle’s normal
vector - if dot product is negative, it is
facing away

● Often just a switch that can be turned
on/off in GPUs today -
“glEnable(GL_CULL_FACE)”

Occlusion Culling
● The most computationally expensive

(checks visibility of every object), so
done last in the pipeline

● Occlusion highly dependent on order
of drawn objects as well as distance
from viewpoint to object - “a
matchbox can obscure the Golden
Gate Bridge if it’s close enough”

Occlusion Culling can be extremely effective, but it
comes at a cost.

Cache Optimization

Caches and Memory

Locality
● Temporal locality

○ If an item has been referenced recently, it
will probably be accessed again soon

● Spatial locality
○ If an item has been referenced recently,

nearby items will tend to be referenced soon

Example: Matrix Multiplication

How Unity exploit Caches
● Entity Component System

○ Data-Oriented Tech Stack

How Unity exploit Caches
● Traditional: Game object

and components is “Has-a”
relationship

How Unity exploit Caches
● In Unity

How Unity exploit Caches

What can we do
with these
acceleration
algorithms?

Conclusion
Acceleration algorithms are and will continue to be a core part of the rendering
process, despite faster and faster GPUs. They enable us to render many times more
complex scenes in real time, without having to change the underlying hardware or
rendering pipeline. They’re also just some pretty cool algorithms that are fun to
learn and implement - and they require knowledge of how rendering as well as the
cache/memory hardware works to implement effectively.

Resources
https://web.cs.wpi.edu/~matt/courses/cs563/talks/bsp/document.html

Real-Time Rendering Book by Eric Haines, Natty Hoffman, Tomas Moller

https://sites.cs.ucsb.edu/~tyang/class/240a17/slides/Cache3.pdf

Game Design Patterns by Robert Nystrom

https://web.cs.wpi.edu/~matt/courses/cs563/talks/bsp/document.html
https://sites.cs.ucsb.edu/~tyang/class/240a17/slides/Cache3.pdf

