Volumetric Effects

Bo Yang and Taylor Infuso

Volumetric effects are effects that require rendering
U V hat are volume for authenticity.
Volumetric Effects? Some examples would be

Fog

God Ray

Halos

Light Shafts
Particle Systems
...and more

Bilateral Filters Oﬂ"‘:ﬁ% 128 steps

http://www.youtube.com/watch?v=0MilN7jKK9c

Halos are spherical lighting
effects where the highest
concentration is in the center
of the sphere with lower
amounts of light further from
the center.

How Do We
Generate Halos?

Halos require us to measure the level of brightness of
every pixel. How do we do this? RAYCASTS!

Basic Calculations for Light Density at a pixel:

Light Density = 1 - (distance from halo center)*2 /
(radius of halo)*2

(this is a simplified version of the function)

Generating a halo requires vector calculus. We need to
determine what brightness each pixel should be based
off of the ray entering the halo. To do this, we:

Mathematical
Concepts

1. Determine the distance between our camera
and the point of the bounding geometry our ray
points to. We need a density function which is
determined by where this ray intersects the
halo.

2. We find a pixel on the ray and use z-buffering to
determine its depth.

3. We need to integrate. That means clamping an
interval between the entrance and exit point of
the ray through the halo. We then determine the
light density and normalize the integral
(equation will be shown on the next slide).

uniform TextureRect structureBuffer;
uniform float3 cameraPosition, cameraView;
uniform float R2, recipR2, recip3R2, normalizer;

{

float CalculateHaloBrightness(float3 pobject, float2 pixelCoord)

float3 vdir = cameraPosition - pobject;

float v2 = dot(vdir, vdir);

float p2 = dot(pobject, pobject);

float pv = -dot(pobject, vdir);

float m = sqrt(max(pv * pv - v2 * (p2 - R2), ©.9));

// Read z© from the structure buffer.
float2 depth = texture(structureBuffer, pixelCoord).zw;
float t@ = 1.0 + (depth.x + depth.y) / dot(cameraView, vdir);

// Calculate clamped limits of integration.
float t1 = clamp((pv - m) / v2, to, 1.0);

float t2 = clamp((pv + m) / v2, tO, 1.0);
float ul £l *-¢£1:

float u2 = t2 * t2;

// Evaluate density integral, normalize, and square.
float B = ((1.© - p2 * recipR2) * (t2 - t1) + pv * recipR2 * (u2

— v2 * recip3R2 * (t2 * u2 - t1 * ul)) * normalizer;
return (B * B * v2);

- ul)

Light Shaft

A light shaft is described as a lightsource that extends
light over a long distance generally used in a scene
with low visibility/darkness to emphasize a light
source.

= :.—:_“al\ “%‘:‘

R VD

http://www.youtube.com/watch?v=p3GGgy0Ulcg

The Process Of 1. ielr;gerrjt:hz]::lo. Halos use a very similar setup
Creating Light

Shafts 2. We generate the brightness with a function that
looks like this: light_density = (location of
source of light - pixel in light shaft) / height of
light shaft

(again, this is simplified)

Mathematical
Concepts

To generate shaft, it's rendered by the pixel shader
after the intersection parameter t1, and t2 have been
calculated. To do it

1. Using inside of a shaft, by linear density
function, we have a formula p(z)=oz+p,,

2. As with halos, the brightness of a shaft by
integrating this density function along the ray
between two parameters where it intersects the
shaft's surface.

3. Find the minimum or maximum parameter value
of t. This value represent the range limit.

uniform TextureRect structureBuffer;

uniform float3 cameraView;
uniform float shaftSigma, shaftRhod, shaftTau, normalizer;

float CalculateShaftBrightness(float pz, float3 vdir, float2 pixelCoord,
float t1, float t2)
{
/| Read z0 from the structure buffer, calculate t@, and clamp to [t0,1].
float2 depth = texture(structureBuffer, pixelCoord).zw;
float t0 = 1.0 + (depth.x + depth.y) / dot(cameraView, vdir);
t1 = clamp(t1, to, 1.0); t2 = clamp(t2, t0, 1.0);

// Limit to range where density is not negative.

float tlim = (shaftTau - pz) / vdir.z;

if (vdir.z * shaftSigma < 0.0) {t1 = min(t1, tlim); t2 = min(t2, tlim);}
else {t1 = max(t1, tlim); t2 = max(t2, tlim);}

/[Evaluate density integral, normalize, and square.

float B = (shaftSigna * (pz + vdir.z * ((t1 + t2) * 0.5)) + shaftRhod)
¥ (t2 - t1) * normalizer,

return (B * B * dot(vdir, vdir));

Atmosphere Buffer

Atmosphere buffering is a term referring to the layer
we use to store light contributions. These
contributions come from pixels outside of shadow. For
atmospheric shadowing, the basic idea is to generate
a ray for each pixel’s location on the projection plane
and sample it at many points within some fixed range
of distances from the camera.

Taking a greater number of samples per ray produces
better results, but doing so comes at the cost of
performance. Since the ray render do not need to
include sharp details, one easy step we can take to
reduce the overall computational cost is to make the
atmosphere buffer half the resolution of the main
frame buffer so we render only one quarter the
number of pixels.

How We Do This In
Unreal?

VO)

File Edit
R Modes.

O e

Window Help

= ;G Ny

Settings

Save Current Source Control | Content Marketplace Blueprints Cinematics Build Play Launch

Recently Placed
- ® o :
Lights Empty CF
Empty Pz
Visual Effects
Geometry ' Point Ligh
= 4
Volumes -
¥ Playerst
All Classes

P cue
® sohere

" Cylinder

Cone

o |

~ Plane

W Box Trige

i = =
&= Content Browser
W AddNew > & Import € 5 | %= Content » Materials »
]
(o
23SV E—
0374190 BaB4HL Glass Glass2 LampShade LampShade Metal new periin_noise Plasti Plastic Plastic 4 texture 2
Z] backaround

17 items.

£ Type here to search o

s
&
C

© View Options~

Viorid outiner

 cube21
¥ Cylinder v

y Cylinder2 ! !

%¥ DirectionalLight DirectionalLigt
ExponentialHeightFog ExponentialHeightFog
) Plane T

I . r
PointLight ointLigh
PointLight2 ntLigh

44 actors (1 selected) © View Options~

. Details
Heo-

4 Transform

4 Exponential Height Fog Component

Fog Cutoff Distance

4 Inscattering Texture
Inscattering Color Cubemap

Inscattering Color Cubemap Angle
D Inscattering Texture Tint
Fully Directional Inscattering Color Dist

Non Directional Inscattering Color Dista

4 Directional Inscattering

Directional Inscattering Exponent

Directional Ins

ttering Start Distance

b Directional Inscattering Color

515PM
10237200 &

In-Editor Options

4 Light
Intensity m)

D Light Color I -
Source Angle 015357 N

Source Soft Angle
Temperature

Use Temperature
Affects World

Cast Shadows

Indirect Lighting Intensity

Volumetric Scattering Intensity

- 3 8 8
4

4 Volumetric Fog

Volumetric Fog
Scattering Distribution
> Albedo
> Emissive
Extinction Scale
View Distance

Static Lighting Scattering Intensity

Unreal Engine Demo
(inspired by GDC 2018
Unreal Engine
Presentation)

https://docs.google.com/file/d/17qztjd8r2582utM1i2XBJKZxtR5mcLuh/preview

Volumetric
Particles (inspired
by GDC 2018 Unreal
Engine
Presentation)

https://docs.google.com/file/d/1wwAW93eRpFI-n4-g9suIzppJ0E_J5zfK/preview

AL 0

File Edit Asset Window Help

- ,@ b9 %/ o | Ry I * s L -
2 - -~ | \> . © ¥ - M
Save Browse Search ~ Home CleanUp |GONNECIOG] Live Update Hide Unrelated Substance [WBIBIEN Platform Stats Preview Nodes Hierarchy

0.896,0.179,0.0444 A

3
(r——
NewMaterial

@ Albedo

Absolute World Position

—_— O Emissive Color
SphereMask ¥

“Muiti b Extincti
Particle Position ®x o Multiply(,0.05) ¥ / @ Extinction
- s
____——es
[3

B
Radius

Hardness

aonee

5\ Details &) Parameter Default:
Off = La

Particle Radius

4 Material Expression Constant 3Vector

o v

D Constant

4 Material Expression L

B stats

4 Material

urface

Surface
Deferred Decal
Light Function
Volume

ost Proces

Material Domain

Blend Mode

Decal Blend Mode

Information We Do
Not Fully
Understand

Actually designing a atmosphere buffer is
incredibly complicated. Requires knowledge on
multi light ray deflection combined with
elements of randomization.

Determining how light rays should appear when
the camera is outside of their range.

Akenine-Moller, Tomas. Haines, Eric. Hoffman, Naty. Pesce,
Angelo. lwanicki, Michal. Hillaire Sebastien. Real-Time
Rendering. Boca Raton. CRC Press, 2018. Print.

Kostack Studio. “God Rays - Blender Volume Lighting.” Youtube,
15 October 2012.
https://www.youtube.com/watch?v=p3GGgy0Ulcg

stoopdapoop. “Guerilla Games: 8 Sample Volumetric Lighting.”
Youtube, 4 September 2014.
https://www.youtube.com/watch?v=0MilN7jKK9c

Unreal Engine. “Volumetric Fog and Lighting in Unreal Engine 4 |
GDC 2018 | Unreal Engine.” Youtube, 27 March 2018.
https://www.youtube.com/watch?v=Xd7-rTzfmCo

https://www.youtube.com/watch?v=p3GGgy0Ulcg
https://www.youtube.com/watch?v=0MilN7jKK9c
https://www.youtube.com/watch?v=Xd7-rTzfmCo

