
Metropolis Light Transport

Eric Veach Leonidas J. Guibas

Computer Science Department
Stanford University

Abstract

We present a new Monte Carlo method for solving the
light transport problem, inspired by the Metropolis sampling
method in computational physics. To render an image, we
generate a sequence of light transport paths by randomly
mutating a single current path (e.g. adding a new vertex to
the path). Each mutation is accepted or rejected with a care-
fully chosen probability, to ensure that paths are sampled
according to the contribution they make to the ideal image.
We then estimate this image by sampling many paths, and
recording their locations on the image plane.

Our algorithm is unbiased, handles general geometric and
scattering models, uses little storage, and can be orders of
magnitude more efficient than previous unbiased approaches.
It performs especially well on problems that are usually con-
sidered difficult, e.g. those involving bright indirect light,
small geometric holes, or glossy surfaces. Furthermore, it
is competitive with previous unbiased algorithms even for
relatively simple scenes.

The key advantage of the Metropolis approach is that the
path space is explored locally, by favoring mutations that
make small changes to the current path. This has several
consequences. First, the average cost per sample is small
(typically only one or two rays). Second, once an impor-
tant path is found, the nearby paths are explored as well,
thus amortizing the expense of finding such paths over many
samples. Third, the mutation set is easily extended. By con-
structing mutations that preserve certain properties of the
path (e.g. which light source is used) while changing others,
we can exploit various kinds of coherence in the scene. It is
often possible to handle difficult lighting problems efficiently
by designing a specialized mutation in this way.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism; I.3.3 [Computer Graph-
ics]: Picture/Image Generation; G.1.9 [Numerical Analysis]:
Integral Equations—Fredholm equations.

Keywords: global illumination, lighting simulation,
radiative heat transfer, physically-based rendering, Monte
Carlo integration, variance reduction, Metropolis-Hastings
algorithm, Markov Chain Monte Carlo (MCMC) methods

E-mail: ericv@cs.stanford.edu, guibas@cs.stanford.edu

1 Introduction

There has been a great deal of work in graphics on solv-
ing the light transport problem efficiently. However, cur-
rent methods are optimized for a fairly narrow class of input
scenes. For example, many algorithms require a huge in-
crease in computer resources when there is bright indirect
lighting, or when most surfaces are non-diffuse reflectors.
For light transport algorithms to be widely used, it is im-
portant to find techniques that are less fragile. Rendering
algorithms must run within acceptable time bounds on real
models, yielding images that are physically plausible and
visually pleasing. They must support complex geometry,
materials, and illumination — these are all essential compo-
nents of real-life environments.

Monte Carlo methods are an attractive starting point in
the search for such algorithms, because of their general-
ity and simplicity. Especially appealing are unbiased algo-
rithms, i.e. those that compute the correct answer on the
average. For these algorithms, any error in the solution is
guaranteed to show up as random variations among the sam-
ples (e.g., as image noise). This error can be estimated by
simply computing the sample variance.

On the other hand, many methods used in graphics are
biased. To make any claims about the correctness of the re-
sults of these algorithms, we must bound the amount of bias.
In general this is very difficult to do; it cannot be estimated
by simply drawing a few more samples. Biased algorithms
may produce results that are not noisy, but are neverthe-
less incorrect. This error is often noticeable visually, in the
form of discontinuities, excessive blurring, or objectionable
surface shading.

In graphics, the first unbiased Monte Carlo light transport
algorithm was proposed by Kajiya [10], building on earlier
work by Cook et al. [4] and Whitted [26]. Since then many
refinements have been suggested (e.g. see [1]). Often these
improvements have been adapted from the neutron transport
and radiative heat transfer literatures, which have a long
history of solving similar problems [22].

However, it is surprisingly difficult to design light trans-
port algorithms that are general, efficient, and artifact-free.1

From a Monte Carlo viewpoint, such an algorithm must effi-
ciently sample the transport paths from the light sources to
the lens. The problem is that for some environments, most
paths do not contribute significantly to the image, e.g. be-
cause they strike surfaces with low reflectivity, or go through
solid objects. For example, imagine a brightly lit room next
to a dark room containing the camera, with a door slightly
ajar between them. Naive path tracing will be very ineffi-
cient, because it will have difficulty generating paths that

1In this regard, certain ray-tracing problems have been shown
to be undecidable, i.e. they cannot be solved on a Turing machine
[19]. We can expect that any light transport algorithm will per-
form very badly as the geometry and materials of the input scene
approach a provably difficult configuration.

go through the doorway. Similar problems occur when there
are glossy surfaces, caustics, strong indirect lighting, etc.

Several techniques have been proposed to sample these
difficult paths more efficiently. One is bidirectional path
tracing, developed independently by Lafortune and Willems
[12, 13], and Veach and Guibas [24, 25]. These methods
generate one subpath starting at a light source and another
starting at the lens, then they consider all the paths ob-
tained by joining every prefix of one subpath to every suffix
of the other. This leads to a family of different importance
sampling techniques for paths, which are then combined to
minimize variance [25]. This can be an effective solution for
certain kinds of indirect lighting problems.

Another idea is to build an approximate representation
of the radiance in a scene, which is then used to modify
the directional sampling of the basic path tracing algorithm.
This can be done with a particle tracing prepass [9], or by
adaptively recording the radiance information in a spatial
subdivision [14]. Moderate variance reductions have been
reported (50% to 70%), but there are several problems, in-
cluding inadequate directional resolution to handle concen-
trated indirect lighting, and substantial space requirements.
Similar ideas have been applied to particle tracing [17, 5].

We propose a new algorithm for importance sampling
the space of paths, which we call Metropolis light transport
(MLT). The algorithm samples paths according to the con-
tribution they make to the ideal image, by means of a ran-
dom walk through path space. In Section 2, we give a high-
level overview of MLT, then we describe its components in
detail. Section 3 summarizes the classical Metropolis sam-
pling algorithm, as developed in computational physics. Sec-
tion 4 describes the path integral formulation of light trans-
port, upon which our methods are based. Section 5 shows
how to combine these two ideas to yield an effective light
transport algorithm. Results are presented in Section 6, fol-
lowed by conclusions and suggested extensions in Section 7.
To our knowledge, this is the first application of the Metrop-
olis method to transport problems of any kind.

2 Overview of the MLT algorithm

To make an image, we sample the paths from the light
sources to the lens. Each path x̄ is a sequence x0x1 . . .xk of
points on the scene surfaces, where k ≥ 1 is the length of the
path (the number of edges). The numbering of the vertices
along the path follows the direction of light flow.

We will show how to define a function f on paths, together
with a measure µ, such that

∫
D
f(x̄) dµ(x̄) represents the

power (flux) that flows from the light sources to the image
plane along a set of paths D. We call f the image contribu-
tion function, since f(x̄) is proportional to the contribution
made to the image by light flowing along x̄.

Our overall strategy is to sample paths with probability
proportional to f , and record the distribution of paths over
the image plane. To do this, we generate a sequence of paths
X̄0, X̄1, . . ., X̄N , where each X̄i is obtained by a random
mutation to the path X̄i−1. The mutations can have almost
any desired form, and typically involve adding, deleting, or
replacing a small number of vertices on the current path.

However, each mutation has a chance of being rejected,
depending on the relative contributions of the old and new
paths. For example, if the new path passes through a wall,
the mutation will be rejected (by setting X̄i = X̄i−1). The
Metropolis framework gives a recipe for determining the ac-
ceptance probability for each mutation, such that in the limit

the sampled paths X̄i are distributed according to f (this is
the stationary distribution of the random walk).

As each path is sampled, we update the current image
(which is stored in memory as a two-dimensional array of
pixel values). To do this, we find the image location (u, v)
corresponding to each path sample X̄i, and update the val-
ues of those pixels whose filter support contains (u, v). All
samples are weighted equally; the light and dark regions of
the final image are caused by differences in the number of
samples recorded there.

The MLT algorithm is summarized below. In the following
sections, we will describe it in more detail.

x̄← InitialPath()
image← { array of zeros }
for i← 1 to N

ȳ←Mutate(x̄)

a← AcceptProb(ȳ|x̄)
if Random() < a

then x̄← ȳ
RecordSample(image, x̄)

return image

3 The Metropolis sampling algorithm

In 1953, Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller introduced an algorithm for handling difficult sam-
pling problems in computational physics [15]. It was origi-
nally used to predict the material properties of liquids, but
has since been applied to many areas of physics and chem-
istry.

The method works as follows (our discussion is based on
[11]). We are given a state space Ω, and a non-negative
function f : Ω → IR+. We are also given some initial state
X̄0 ∈ Ω. The goal is to generate a random walk X̄0, X̄1, . . .
such that X̄i is eventually distributed proportionally to f , no
matter which state X̄0 we start with. Unlike most sampling
methods, the Metropolis algorithm does not require that f
integrate to one.

Each sample X̄i is obtained by making a random change to
X̄i−1 (in our case, these are the path mutations). This type
of random walk, where X̄i depends only on X̄i−1, is called
a Markov chain. We let K(ȳ | x̄) denote the probability
density of going to state ȳ, given that we are currently in
state x̄. This is called the transition function, and satisfies
the condition

∫
Ω
K(ȳ | x̄) dµ(ȳ) = 1 for all x̄ ∈ Ω.

The stationary distribution. Each X̄i is a random variable
with some distribution pi, which is determined from pi−1 by

pi(x̄) =

∫
Ω

K(x̄ | ȳ) pi−1(ȳ) dµ(ȳ) . (1)

With mild conditions onK (discussed further in Section 5.2),
the pi will converge to a unique distribution p, called the
stationary distribution. Note that p does not depend on the
initial state X̄0.

To give a simple example of this idea, consider a state
space consisting of n2 vertices arranged in an n×n grid. Each
vertex is connected to its four neighbors by edges, where
the edges “wrap” from left to right and top to bottom as
necessary (i.e. with the topology of a torus). A transition
consists of randomly moving from the current vertex x̄ to
one of the neighboring vertices ȳ with a probability of 1/5
each, and otherwise staying at vertex x̄.

Suppose that we start at an arbitrary vertex X̄0 = x̄∗, so
that p0(x̄)=1 for x̄= x̄∗, and p0(x̄)=0 otherwise. After one
transition, X̄1 is distributed with equal probability among x̄∗

and its four neighbors. Similarly, X̄2 is randomly distributed
among 13 vertices (although not with equal probability). If
this process is continued, eventually pi converges to a fixed
probability distribution p, which necessarily satisfies

p(x̄) =
∑

ȳ
K(x̄ | ȳ) p(ȳ) .

For this example, p is the uniform distribution p(x̄)=1/n2.

Detailed balance. In a typical physical system, the transi-
tion function K is determined by the physical laws governing
the system. Given some arbitrary initial state, the system
then evolves towards equilibrium through transitions gov-
erned by K.

The Metropolis algorithm works in the opposite direction.
The idea is to invent or construct a transition function K
whose resulting stationary distribution will be proportional
to the given f , and which will converge to f as quickly as
possible. The technique is simple, and has an intuitive phys-
ical interpretation called detailed balance.

Given X̄i−1, we obtain X̄i as follows. First, we choose
a tentative sample X̄′i , which can be done in almost any
way desired. This is represented by the tentative transition
function T , where T (ȳ | x̄) gives the probability density that
X̄′i= ȳ given that X̄i−1 = x̄.

The tentative sample is then either accepted or rejected,
according to an acceptance probability a(ȳ | x̄) which will be
defined below. That is, we let

X̄i =

{
X̄′i with probability a(X̄′i |X̄i−1) ,
X̄i−1 otherwise .

(2)

To see how to set a(ȳ | x̄), suppose that we have already
reached equilibrium, i.e. pi−1 is proportional to f . We must
define K(ȳ | x̄) such that the equilibrium is maintained. To
do this, consider the density of transitions between any two
states x̄ and ȳ. From x̄ to ȳ, the transition density is pro-
portional to f(x̄) T (ȳ | x̄) a(ȳ | x̄), and a similar statement
holds for the transition density from ȳ to x̄. To maintain
equilibrium, it is sufficient that these densities be equal:

f(x̄) T (ȳ | x̄) a(ȳ | x̄) = f(ȳ) T (x̄ | ȳ) a(x̄ | ȳ) , (3)

a condition known as detailed balance. We can verify that
if pi−1 ∝ f and condition (3) holds, then equilibrium is
preserved:

pi(x̄) =
[
1−

∫
Ω
a(ȳ | x̄) T (ȳ | x̄) dµ(ȳ)

]
pi−1(x̄) (4)

+
∫

Ω
a(x̄ | ȳ) T (x̄ | ȳ) pi−1(ȳ) dµ(ȳ)

= pi−1(x̄) .

The acceptance probability. Recall that f is given, and T
was chosen arbitrarily. Thus, equation (3) is a condition on
the ratio a(ȳ | x̄)/a(x̄ | ȳ). In order to reach equilibrium as
quickly as possible, the best strategy is to make a(ȳ | x̄) and
a(x̄ | ȳ) as large as possible [18], which is achieved by letting

a(ȳ | x̄) = min

{
1,
f(ȳ) T (x̄ | ȳ)

f(x̄) T (ȳ | x̄)

}
. (5)

According to this rule, transitions in one direction are always
accepted, while in the other direction they are sometimes
rejected, such that the expected number of moves each way
is the same.

Comparison with genetic algorithms. The Metropolis
method differs from genetic algorithms [6] in several ways.
First, they have different purposes: genetic algorithms solve
optimization problems, while the Metropolis method solves
sampling problems (there is no search for an optimum value).
Genetic algorithms work with a population of individuals,
while Metropolis stores only a single current state. Finally,
genetic algorithms have much more freedom in choosing the
allowable mutations, since they do not need to compute the
conditional probability of their actions.

Beyer and Lange [2] have applied genetic algorithms to the
problem of integrating radiance over a hemisphere. They
start with a population of rays (actually directional sam-
ples), which are evolved to improve their distribution with
respect to the incident radiance at a particular surface point.
However, their methods do not seem to lead to a feasible
light transport algorithm.

4 The path integral formulation of light
transport

Often the light transport problem is written as an integral
equation, where we must solve for the equilibrium radiance
function L. However, it can also be written as a pure inte-
gration problem, over the domain of all transport paths. The
MLT algorithm is based on this formulation.2 We start by
reviewing the light transport and measurement equations,
and then show how to transform them into an integral over
paths.

The light transport equation. We assume a geometric op-
tics model where light is emitted, scattered, and absorbed
only at surfaces, travels in straight lines between surfaces,
and is perfectly incoherent. Under these conditions, the light
transport equation is given by3

L(x′→x′′) =Le(x′→x′′) (6)

+

∫
M
L(x→x′) fs(x→x′→x′′)G(x↔x′) dA(x).

HereM is the union of all scene surfaces, A is the area mea-
sure onM, Le(x′→x′′) is the emitted radiance leaving x′ in
the direction of x′′, L is the equilibrium radiance function,
and fs is the bidirectional scattering distribution function
(BSDF). The notation x→ x′ symbolizes the direction of
light flow between two points of M, while x↔ x′ denotes
symmetry in the argument pair.4 The function G represents
the throughput of a differential beam between dA(x) and
dA(x′), and is given by

G(x↔x′) = V (x↔x′)
| cos(θo) cos(θ′i)|
‖x− x′‖2 ,

where θo and θ′i represent the angles between the segment
x↔ x′ and the surface normals at x and x′ respectively,
while V (x↔x′) = 1 if x and x′ are mutually visible and is
zero otherwise.

2Note that two different formulations of bidirectional path
tracing have been proposed: one based on a measure over paths
[24, 25], and the other based on the global reflectance distribution
function (GRDF) [13]. However, only the path measure approach
defines the notion of probabilities on paths, as required for com-
bining multiple estimators [25] and the present work.

3Technically, the equations of this section deal with spectral
radiance, and apply at each wavelength separately.

4There is redundancy in this representation; e.g. L(x→x′) =
L(x→x′′) whenever x′ and x′′ lie in the same direction from x.

The measurement equation. Light transport algorithms
estimate a finite number of measurements of the equilibrium
radiance L. We consider only algorithms that compute an
image directly, so that the measurements consist of many
pixel values m1, . . . ,mM , where M is the number of pixels
in the image. Each measurement has the form

mj =

∫
M×M

W (j)
e (x→x′)L(x→x′)G(x↔x′) dA(x) dA(x′),

(7)

where W (j)
e (x→x′) is a weight that indicates how much the

light arriving at x′ from the direction of x contributes to the
value of the measurement.5 For real sensors, W (j)

e is called
the flux responsivity (with units of [W−1]), but in graphics
it is more often called an importance function.6

The path integral formulation. By recursively expanding
the transport equation (6), we can write measurements in
the form

mj =

∫
M2

Le(x0→x1)G(x0↔x1)W
(j)

e (x0→x1) dA(x0) dA(x1)

+

∫
M3
Le(x0→x1)G(x0↔x1) fs(x0↔x1↔x2)

G(x1↔x2)W (j)
e (x1→x2) dA(x0) dA(x1) dA(x2)

+· · · . (8)

The goal is to write this expression in the form

mj =

∫
Ω

fj(x̄) dµ(x̄) , (9)

so that we can handle it as a pure integration problem.
To do this, let Ωk be the set of all paths of the form

x̄ = x0x1 . . .xk, where k ≥ 1 and xi ∈ M for each i. We
define a measure µk on the paths of each length k according
to

dµk(x0 . . .xk) = dA(x0) · · · dA(xk) ,

i.e. µk is a product measure. Next, we let Ω be the union of
all the Ωk, and define a measure µ on Ω by7

µ(D) =

∞∑
k=1

µk(D ∩Ωk) . (10)

The integrand fj is defined by extracting the appropriate
term from the expansion (8) — see Figure 1. For example,

fj(x0x1) = Le(x0→x1) G(x0↔x1) W (j)
e (x0→x1) .

We call fj the measurement contribution function.
There is nothing tricky about this; we have just expanded

and rearranged the transport equations. The most signifi-
cant aspect is that we have removed the sum over different
path lengths, and replaced it with a single integral over an
abstract measure space of paths.

5The function W (j)
e is zero almost everywhere. It is non-zero

only if x′ lies on the virtual camera lens, and the ray x → x′

is mapped by the lens to the small region of the image plane
corresponding to the filter support of pixel j.

6Further references and discussion may be found in [23].
7This measure on paths is similar to that of Spanier and Gel-

bard [22, p. 85]. However, in our case infinite-length paths are
excluded. This makes it easy to verify that (10) is in fact a mea-
sure, directly from the axioms [7].

We(x2, x3)

fs(x0, x1, x2)

fs(x1, x2, x3)

G(x0, x1)

Le(x0, x1)

G(x1, x2)
G(x2, x3)

x0x1

x2

x3

Figure 1: The measurement contribution function fj is a
product of many factors (shown for a path of length 3).

5 Metropolis light transport

To complete the MLT algorithm outlined in Section 2, there
are several tasks. First, we must formulate the light trans-
port problem so that it fits the Metropolis framework. Sec-
ond, we must show how to avoid start-up bias, a problem
which affects many Metropolis applications. Most impor-
tantly, we must design a suitable set of mutations on paths,
such that the Metropolis method will work efficiently.

5.1 Reduction to the Metropolis framework

We show how the Metropolis method can be adapted to es-
timate all of the pixel values mj simultaneously and without
bias.

Observe that each integrand fj has the form

fj(x̄) = wj(x̄) f(x̄) , (11)

where wj represents the filter function for pixel j, and f
represents all the other factors of fj (which are the same for
all pixels). In physical terms,

∫
D
f(x̄) dµ(x̄) represents the

radiant power received by the image area of the image plane
along a set D of paths.8 Note that wj depends only on the
last edge xk−1xk of the path, which we call the lens edge.

An image can now be computed by sampling N paths X̄i
according to some distribution p, and using the identity

mj = E

[
1

N

N∑
i=1

wj(X̄i)f(X̄i)

p(X̄i)

]
.

If we could let p = (1/b) f (where b is the normalization
constant

∫
Ω
f(x̄) dµ(x̄)), the estimate for each pixel would

be

mj = E

[
1

N

N∑
i=1

b wj(X̄i)

]
.

This equation can be evaluated efficiently for all pixels at
once, since each path contributes to only a few pixel values.

This idea requires the evaluation of b, and the ability to
sample from a distribution proportional to f . Both of these
are hard problems. For the second part, the Metropolis al-
gorithm will help; however, the samples X̄i will have the
desired distribution only in the limit as i→∞. In typical
Metropolis applications, this is handled by starting in some
fixed initial state X̄0, and discarding the first k samples until
the random walk has approximately converged to the equi-
librium distribution. However, it is often difficult to know
how large k should be. If it is too small, then the samples
will be strongly influenced by the choice of X̄0, which will
bias the results (this is called start-up bias).

8We assume that f(x̄)=0 for paths that do not contribute to
any pixel value (so that we do not waste any samples there).

Eliminating start-up bias. We show how the MLT algo-
rithm can be initialized to avoid start-up bias. The idea
is to start the walk in a random initial state X̄0, which is
sampled from some convenient path distribution p0 (we use
bidirectional path tracing for this purpose). To compensate
for the fact that p0 is not the desired distribution (1/b) f ,
the sample X̄0 is assigned a weight: W0 = f(X̄0)/p0(X̄0).
Thus after one sample, the estimate for pixel j is W0wj(X̄0).
All of these quantities are computable since X̄0 is known.

Additional samples X̄1, X̄2, . . ., X̄N are generated by mu-
tating X̄0 according to the Metropolis algorithm (using f as
the target density). Each of the X̄i has a different distribu-
tion pi, which only approaches (1/b) f as i→∞. To avoid
bias, however, it is sufficient to assign these samples the same
weight Wi=W0 as the original sample, where the following
estimate is used for pixel j:

mj = E

[
1

N

N∑
i=1

Wi wj(X̄i)

]
. (12)

To show that this is unbiased, recall that the initial state
was chosen randomly, and so we must average over all choices
of X̄0 when computing expected values. Consider a group of
starting paths obtained by sampling p0 many times. If we
had p0 = (1/b) f and W0 = b, then obviously this starting
group would be in equilibrium. For general p0, the choice
W0 = f/p0 leads to exactly the same distribution of weight
among the starting paths, and so we should expect that these
initial conditions are unbiased as well. (See Appendix A for
a proof.)

This technique for removing start-up bias is not specific
to light transport. However, it requires the existence of an
alternative sampling method p0, which for many Metropolis
applications is not easy to obtain.

Initialization. In practice, initializing the MLT algorithm
with a single sample does not work well. If we generate only
one path X̄0 (e.g. using bidirectional path tracing), it is quite
likely that W0 =0 (e.g. the path goes through a wall). Since
all subsequent samples use the same weight Wi =W0, this
would lead to a completely black final image. Conversely,
the initial weight W0 on other runs may be much larger
than expected. Although the algorithm is unbiased, this
statement is only useful when applied to the average result
over many runs. The obvious solution is to run n copies
of the algorithm in parallel, and accumulate all the samples
into one image.

The strategy we have implemented is to sample a moder-
ately large number of paths X̄(1)

0 , . . ., X̄(n)
0 , with correspond-

ing weights W (1)
0 , . . ., W (n)

0 . We then resample the X̄(i)
0 to

obtain a much smaller number n′ of equally-weighted paths
(chosen with equal spacing in the cumulative weight distri-

bution of the X̄(i)
0). These are used as independent seeds for

the Metropolis phase of the algorithm.
The value of n is determined indirectly, by generating a

fixed number of eye and light subpaths (e.g. 10 000 pairs),
and considering all the ways to link the vertices of each pair.
Note that it is not necessary to save all of these paths for
the resampling step; they can be regenerated by restarting
the random number generator with the same seed.

It is often reasonable to choose n′ = 1 (a single Metrop-
olis seed). In this case, the purpose of the first phase is to
estimate the mean value of W0, which determines the ab-
solute image brightness.9 If the image is desired only up

9More precisely, E[W0] =
∫
f = b, which represents the total

power falling on the image region of the film plane.

to a constant scale factor, then n can be chosen to be very
small. The main reasons for retaining more than one seed
(i.e. n′ > 1) are to implement convergence tests (see below)
or lens subpath mutations (Section 5.3.3).

Effectively, we have separated the image computation into
two subproblems. The initialization phase estimates the
overall image brightness, while the Metropolis phase deter-
mines the relative pixel intensities across the image. The
effort spent on each phase can be decided independently.
In practice, however, the initialization phase is a negligible
part of the total computation time (e.g., even 100 000 bidi-
rectional samples typically constitute less than one sample
per pixel).

Convergence tests. Another reason to run several copies
of the algorithm in parallel is that it facilitates convergence
testing. (We cannot apply the usual variance tests to sam-
ples generated by a single run of the Metropolis algorithm,
since consecutive samples are highly correlated.)

To test for convergence, the Metropolis phase runs with
n′ independent seed paths, whose contributions to the image
are recorded separately (in the form of n′ separate images).
This is done only for a small representative fraction of the
pixels, since it would be too expensive to maintain many
copies of a large image. The sample variance of these test
pixels is then computed periodically, until the results are
within prespecified bounds.10

Spectral sampling. Our discussion so far has been limited
to monochrome images, but the modifications for color are
straightforward.

We represent BSDF’s and light sources as point-sampled
spectra (although it would be easy to use some other repre-
sentation). Given a path, we compute the energy delivered
to the lens at each of the sampled wavelengths. The result-
ing spectrum is then converted to a tristimulus color value
(we use RGB) before it is accumulated in the current image.

The image contribution function f is redefined to compute
the luminance of the corresponding path spectrum. This
implies that path samples will be distributed according to
the luminance of the ideal image, and that the luminance
of every filtered image sample will be the same (irrespective
of its color). Effectively, each color component h is sampled
with an estimator of the form h/p, where p is proportional
to the luminance.

Since the human eye is substantially more sensitive to
luminance differences than other color variations, this choice
helps to minimize the apparent noise.11

5.2 Designing a mutation strategy

The main disadvantage of the Metropolis method is that
consecutive samples are correlated, which leads to higher
variance than we would get with independent samples. This
can happen either because the proposed mutations to the
path are very small, or because too many mutations are
rejected.

This problem can be minimized by choosing a suitable set
of path mutations. We consider some of the properties that
these mutations should have, to minimize the error in the
final image.

10Note that in all of our tests, the number of mutations for
each image was specified manually, so that we would have explicit
control over the computation time.

11Another way to handle color is to have a separate run for each
wavelength. However, this is inefficient (we get less information
from each path) and leads to unnecessary color noise.

Figure 2: If only additions and deletions of a single vertex
are allowed, then paths cannot mutate from one side of the
barrier to the other.

High acceptance probability. If the acceptance probability
a(ȳ | x̄) is very small on the average, there will be long path
sequences of the form x̄, x̄, . . ., x̄ due to rejections. This leads
to many samples at the same point on the image plane, and
appears as noise.

Large changes to the path. Even if the acceptance proba-
bility for most mutations is high, samples will still be highly
correlated if the proposed path mutations are too small. It
is important to propose mutations that make substantial
changes to the current path, such as increasing the path
length, or replacing a specular bounce with a diffuse one.

Ergodicity. If the allowable mutations are too restricted,
it is possible for the random walk to get “stuck” in some
subregion of the path space (i.e. one where the integral of
f is less than b). To see how this can happen, consider
Figure 2, and suppose that we only allow mutations that
add or delete a single vertex. In this case, there is no way
for the path to mutate to the other side of the barrier, and
we will miss part of the path space.

Technically, we want to ensure that the random walk con-
verges to an ergodic state. This means that no matter how
X̄0 is chosen, it converges to the same stationary distribu-
tion p. To do this, it is sufficient to ensure that T (ȳ | x̄) > 0
for every pair of states x̄, ȳ with f(x̄) > 0 and f(ȳ) > 0. In
our implementation, this is always true (see Section 5.3.1).

Changes to the image location. To minimize correlation
between the sample locations on the image plane, it is desir-
able for mutations to change the lens edge xk−1xk. Muta-
tions to other portions of the path do not provide informa-
tion about the path distribution over the image plane, which
is what we are most interested in.

Stratification. Another potential weakness of the Metrop-
olis approach is the random distribution of samples across
the image plane. This is commonly known as the “balls in
bins” effect: if we randomly throw n balls into n bins, we
cannot expect one ball per bin. (Many bins may be empty,
while the fullest bin is likely to contain Θ(log n) balls.) In an
image, this unevenness in the distribution produces noise.

For some kinds of mutations, this effect is difficult to
avoid. However, it is worthwhile to consider mutations for
which some form of stratification is possible.

Low cost. It is also desirable that mutations be inexpen-
sive. Generally, this is measured by the number of rays cast,
since the other costs are relatively small.

5.3 Good mutation strategies

We now consider three specific mutation strategies, namely
bidirectional mutations, perturbations, and lens subpath mu-
tations. These strategies are designed to satisfy different
subsets of the goals mentioned above; our implementation
uses a mixture of all three (as we discuss in Section 5.3.4).

Note that the Metropolis framework allows us greater free-
dom than standard Monte Carlo algorithms in designing
sampling strategies. This is because we only need to com-
pute the conditional probability T (ȳ | x̄) of each mutation:
in other words, the mutation strategy is allowed to depend
on the current path.

5.3.1 Bidirectional mutations

Bidirectional mutations are the foundation of the MLT algo-
rithm. They are responsible for making large changes to the
path, such as modifying its length. The basic idea is simple:
we choose a subpath of the current path x̄, and replace it
with a different subpath. We divide this into several steps.

First, the subpath to delete is chosen. Given the current
path x̄ = x0 . . .xk, we assign a probability pd[s, t] to the
deletion of each subpath xs . . .xt. The subpath endpoints
are not included, i.e. xs . . .xt consists of t − s edges and
t− s−1 vertices, with indices satisfying −1 ≤ s < t ≤ k+ 1.

In our implementation, pd[s, t] is a product two factors.
The first factor pd,1 depends only on the subpath length; its
purpose is to favor the deletion of short subpaths. (These
are less expensive to replace, and yield mutations that are
more likely to be accepted, since they make a smaller change
to the current path). The purpose of the second factor pd,2

is to avoid mutations with low acceptance probabilities; it
will be described in Section 5.4.

To determine the deleted subpath, the distribution pd[s, t]
is normalized and sampled. At this point, x̄ has been split
into two (possibly empty) pieces x0 . . .xs and xt . . .xk.

To complete the mutation, we first choose the number of
vertices s′ and t′ to be added to each side. We do this in two
steps: first, we choose the new subpath length, la =s′+t′+1.
It is desirable that the old and new subpath lengths be simi-
lar, since this will tend to increase the acceptance probability
(i.e. it represents a smaller change to the path). Thus, we
choose la according to a discrete distribution pa,1 which as-
signs a high probability to keeping the total path length the
same. Then, we choose specific values for s′ and t′ (subject
to s′+ t′+ 1= la), according to another discrete distribution
pa,2 that assigns equal probability to each candidate value
of s′. For convenience, we let pa[s′, t′] denote the product of
pa,1 and pa,2.

To sample the new vertices, we add them one at a time
to the appropriate subpath. This involves first sampling
a direction according to the BSDF at the current subpath
endpoint (or a convenient approximation, if sampling from
the exact BSDF is difficult), followed by casting a ray to find
the first surface intersected. An initially empty subpath is
handled by choosing a random point on a light source or the
lens as appropriate.

Finally, we join the new subpaths together, by testing the
visibility between their endpoints. If the path is obstructed,
the mutation is immediately rejected. This also happens if
any of the ray casting operations failed to intersect a surface.

Notice that there is a non-zero probability of throwing
away the entire path, and generating a new one from scratch.
This automatically ensures the ergodicity condition (Sec-
tion 5.2), so that the algorithm can never get “stuck” in
a small subregion of the path space.

Parameter values. The following values have provided rea-
sonable results on our test cases. For the probability pd,1[ld]
of deleting a subpath of length ld = t−s, we use pd,1[1]=0.25,
pd,1[2]=0.5, and pd,1[ld]=2−l for ld ≥ 3. For the probability
pa,1[la] of adding a subpath of length la, we use pa,1[ld]=0.5,
pa,1[ld − 1]=0.15, and pa,1[ld + 1]=0.15, with the remaining
probability assigned to the other allowable subpath lengths.

Evaluation of the acceptance probability. Observe that
a(ȳ | x̄) can be written as the ratio

a(ȳ | x̄) =
R(ȳ | x̄)

R(x̄ | ȳ)
, where R(ȳ | x̄) =

f(ȳ)

T (ȳ | x̄)
. (13)

The form of R(ȳ | x̄) is very similar to the sample value
f(ȳ)/p(ȳ) that is computed by standard Monte Carlo algo-
rithms; we have simply replaced an absolute probability p(ȳ)
by a conditional probability T (ȳ | x̄).

Specifically, T (ȳ | x̄) is the product of the discrete proba-
bility pd[s, t] for deleting the subpath xs . . .xt, and the prob-
ability density for generating the s′+t′ new vertices of ȳ. To
calculate the latter, we must take into account all s′+ t′+ 1
ways that the new vertices can be split between subpaths
generated from xs and xt. (Although these vertices were
generated by a particular choice of s′, the probability T (ȳ | x̄)
must take into account all ways of going from state x̄ to ȳ.)

Note that the unchanged portions of x̄ do not contribute
to the calculation of T (ȳ | x̄). It is also convenient to ignore
the factors of f(x̄) and f(ȳ) that are shared between the
paths, since this does not change the result.

An example. Let x̄ be a path x0x1x2x3, and suppose that
the random mutation step has deleted the edge x1x2. It is
replaced by new vertex z0 by casting a ray from x1, so that
the new path is ȳ = x0x1z0x2x3. (This corresponds to the
random choices s=1, t=2, s′=1, t′=0.)

Let ps(x0→ x1→ z0) be the probability density of sam-
pling the direction from x1 to z0, measured with respect
to projected solid angle.12 Then the probability density of
sampling z0 (measured with respect to surface area) is given
by ps(x0→x1→z0)G(x1↔z0).

We now have all of the information necessary to compute
R(ȳ | x̄). From (8), the numerator f(ȳ) is

fs(x0,x1, z0)G(x1, z0) fs(x1, z0,x2)G(z0,x2) fs(z0,x2,x3) ,

where the factors shared between R(ȳ | x̄) and R(x̄ | ȳ) have
been omitted (and we have dropped the arrow notation for
brevity). The denominator T (ȳ | x̄) is

pd[1, 2]

[
pa[1, 0] ps(x0,x1, z0)G(x1, z0)
+ pa[0, 1] ps(x3,x2, z0)G(x2, z0)

]
.

In a similar way, we find that R(x̄ | ȳ) is given by

{fs(x0,x1,x2)G(x1,x2) fs(x1,x2,x3)} / {pd[1, 3] pa[0, 0]} ,
where pd and pa now refer to ȳ. To implement this calcula-
tion in general, it is convenient to define functions

C(x0,x1,x2,x3) = fs(x0,x1,x2)G(x1,x2) fs(x1,x2,x3)

S(x0,x1,x2) = fs(x0,x1,x2)/ps(x0,x1,x2) , (14)

and then express 1/R(ȳ | x̄) in terms of these functions. This
formulation extends easily to subpaths of arbitrary length,
and can be evaluated efficiently by precomputing C and S
for each edge. In this form, it is also easy to handle specular
BSDF’s, since the ratio S is always well-defined.

12If p′s(x0→ x1 → z0) is the density with respect to ordinary
solid angle, then ps = p′s/| cos(θo)|, where θo is the angle between
x1→z0 and the surface normal at x1.

Lens perturbation Caustic perturbation

Figure 3: The lens edge can be perturbed by regenerating it
from either side: we call these lens perturbations and caustic
perturbations.

5.3.2 Perturbations

There are some lighting situations where bidirectional mu-
tations will almost always be rejected. This happens when
there are small regions of the path space in which paths
contribute much more than average. This can be caused by
caustics, difficult visibility (e.g. a small hole), or by concave
corners where two surfaces meet (a form of singularity in the
integrand). The problem is that bidirectional mutations are
relatively large, and so they usually attempt to mutate the
path outside the high-contribution region.

One way to increase the acceptance probability is to use
smaller mutations. The principle is that nearby paths will
make similar contributions to the image, and so the accep-
tance probability will be high. Thus, rather than having
many rejections on the same path, we can explore the other
nearby paths of the high-contribution region.

Our solution is to choose a subpath of the current path,
and move the vertices slightly. We call this type of mutation
a perturbation. While the idea can be applied to arbitrary
subpaths, our main interest is in perturbations that include
the lens edge xk−1xk (since other changes do not help to
prevent long sample sequences at the same image point). We
have implemented two specific kinds of perturbations that
change the lens edge, termed lens perturbations and caustic
perturbations (see Figure 3). These are described below.

Lens perturbations. We delete a subpath xt . . .xk of the
form (L|D)DS∗E (where we have used Heckbert’s regular
expression notation [8]; S, D, E, and L stand for specular,
non-specular, lens, and light vertices respectively). This is
called the lens subpath, and consists of k−t edges and k−t−1
vertices. (Note that if xt were specular, then any perturba-
tion of xt−1 would result in a path ȳ for which f(ȳ) = 0.)

To replace the lens subpath, we perturb the old image
location by moving it a random distance R in a random
direction φ. The angle φ is chosen uniformly, while R is
exponentially distributed between two values r1 < r2:

R = r2 exp(− ln(r2/r1) U) , (15)

where U is uniformly distributed on [0, 1].
We then cast a ray at the new image location, and extend

the subpath through additional specular bounces to be the
same length as the original. The mode of scattering at each
specular bounce is preserved (i.e. specular reflection or trans-
mission), rather than making new random choices.13 This
allows us to efficiently sample rare combinations of events,
e.g. specular reflection from a surface where 99% of the light
is transmitted.

The calculation of a(ȳ | x̄) is similar to the bidirectional
case. The main difference is the method used for directional
sampling (i.e. distribution (15) instead of the BSDF).

13If the perturbation moves a vertex from a specular to a non-
specular material, then the mutation is immediately rejected.

Figure 4: Using a two-chain perturbation to sample caustics
in a pool of water. First, the lens edge is perturbed to generate
a point x′ on the pool bottom. Then, the direction from
original point x toward the light source is perturbed, and a
ray is cast from x′ in this direction.

Caustic perturbations. Lens perturbations are not possible
in some situations; the most notable example occurs when
computing caustics. These paths have the form LS+DE,
which is unacceptable for lens perturbations.

However, there is another way to perturb paths with a
suffix xt . . .xk of the form (D|L)S∗DE. To do this, we gen-
erate a new subpath starting from xt. The direction of the
segment xt→xt+1 is perturbed by an amount (θ, φ), where θ
is exponentially distributed and φ is uniform. The technique
is otherwise similar to lens perturbations.

Multi-chain perturbations. Neither of the above can han-
dle paths with a suffix of the form (D|L)DS∗DS∗DE, i.e.
caustics seen through a specular surface (see Figure 4). This
can be handled by perturbing the path through more than
one specular chain. At each non-specular vertex, we choose
a new direction by perturbing the corresponding direction
of the original subpath.

Parameter values. For lens perturbations, the image reso-
lution is a guide to the useful range of values. We use r1 =0.1
pixels, while r2 is chosen such that the perturbation region
is 5% of the image area. For caustic and multi-chain per-
turbations, we use θ1 = 0.0001 radians and θ2 = 0.1 radians.
The algorithm is not particularly sensitive to these values.

5.3.3 Lens subpath mutations

We now describe lens subpath mutations, whose goal is to
stratify the samples over the image plane, and also to reduce
the cost of sampling by re-using subpaths. Each mutation
consists of deleting the lens subpath of the current path, and
replacing it with a new one. (As before, the lens subpath
has the form (L|D)S∗E.) The lens subpaths are stratified
across the image plane, such that every pixel receives the
same number of proposed lens subpath mutations.

We briefly describe how to do this. We initialize the algo-
rithm with n′ independent seed paths (Section 5.1), which
are mutated in a rotating sequence. At all times, we also
store a current lens subpath x̄e. An eye subpath mutation
consists of deleting the lens subpath of the current path x̄,
and replacing it with x̄e.

The current subpath x̄e is re-used a fixed number of times
ne, and then a new one is generated. We chose n′ � ne,
to prevent the same lens subpath from being used multiple
times on the same path.

To generate x̄e, we cast a ray through a point on the
image plane, and follow zero or more specular bounces until
we obtain a non-specular vertex.14 To stratify the samples

14At a material with specular and non-specular components, we
randomly choose between them.

on the image plane, we maintain a tally of the number of
lens subpaths that have been generated at each pixel. When
generating a new subpath, we choose a random pixel and, if
it already has its quota of lens subpaths, we choose another
one. We use a rover to make the search for a non-full pixel
efficient. We also control the distribution of samples within
each pixel, by computing a Poisson minimum-disc pattern
and tiling it over the image plane.

The probability a(ȳ | x̄) is similar to the bidirectional case,
except that there is only one way of generating the new sub-
path. (Subpath re-use does not influence the calculation.)

5.3.4 Selecting between mutation types

At each step, we assign a probability to each of the three
mutation types. This discrete distribution is sampled to de-
termine which kind of mutation is applied to the current
path.

We have found that it is important to make the prob-
abilities relatively balanced. This is because the mutation
types are designed to satisfy different goals, and it is difficult
to predict in advance which types will be the most success-
ful. The overall goal is to make mutations that are as large
as possible, while still having a reasonable chance of accep-
tance. This can be achieved by randomly choosing between
mutations of different sizes, so that there is a good chance
of trying an appropriate mutation for any given path.

These observation are similar to those of multiple impor-
tance sampling (an alternative name for the technique in
[25]). We would like a set of mutations that cover all the
possibilities, even though we may not (and need not) know
the optimum way to choose among them for a given path.
It is perfectly fine to include mutations that are designed for
special situations, and that result in rejections most of the
time. This increases the cost of sampling by only a small
amount, and yet it can increase robustness considerably.

5.4 Refinements

We describe several ideas that improve the efficiency of MLT.

Direct lighting. We use standard techniques for direct
lighting (e.g. see [21]), rather than the Metropolis algorithm.
In most cases, these standard methods give better results at
lower cost, due to the fact that the Metropolis samples are
not as well-stratified across the image plane (Section 5.2).
By excluding direct lighting paths from the Metropolis cal-
culation, we can apply more effort to the indirect lighting.

Using the expected sample value. For each proposed muta-
tion, there is a probability a(ȳ | x̄) of accumulating an image
sample at ȳ, and a probability 1 − a(ȳ | x̄) of accumulating
a sample at x̄. We can make this more efficient by always
accumulating a sample at both locations, weighted by the
corresponding probability. Effectively, we have replaced a
random variable by its expected value (a common variance
reduction technique [11]). This is especially useful for sam-
pling the dim regions of the image, which would otherwise
receive very few samples.

Importance sampling for mutation probabilities. We de-
scribe a technique that can increase the efficiency of MLT
substantially, by increasing the average acceptance proba-
bility. The idea is to implement a form of importance sam-
pling which with respect to a(ȳ | x̄), when deciding which
mutation to attempt. This is done by weighting each pos-
sible mutation according to the probability with which the

(a) Bidirectional path tracing with 40 samples per pixel.

(b) Metropolis light transport with an average of 250 mutations per pixel [the same computation time as (a)].

Figure 5: All of the light in the visible portion of this scene comes through a door that is slightly ajar, such that about 0.1%
of the light in the adjacent room comes through the doorway. The light source is a diffuse ceiling panel at the far end of a large
adjacent room, so that virtually all of the light coming through the doorway has bounced several times. The MLT algorithm efficiently
generates paths that go through the small opening between the rooms, by always preserving a path segment that goes through the
doorway. The images are 900 by 500 pixels, and include the effects of all paths up to length 10.

deleted subpath can be regenerated. (This is the factor pd,2

mentioned in Section 5.3.1.)

Let x̄ be the current path, and consider a mutation that
deletes the subpath xs . . .xt. The insight is that given only
the deleted subpath, it is already possible to compute some
of the factors in the acceptance probability a(ȳ | x̄). In par-
ticular, from (13) we see that a(ȳ | x̄) is proportional to
1 /R(x̄ | ȳ), and that it is possible to compute all the com-

ponents of R(x̄ | ȳ) except for the discrete probabilities pd

and pa (these apply to ȳ, which has not been generated yet).
The computable factors of 1 /R(x̄ | ȳ) are denoted pd,2. In
the example of Section 5.3.1, for instance, we have

pd,2[1, 2] = 1/C(x0,x1,x2,x3) .

The discrete probabilities for each mutation type are
weighted by this factor, before a mutation is selected.

6 Results

We have rendered test images that compare Metropolis
light transport with classical and bidirectional path tracing.
Our path tracing implementations support efficient direct
lighting calculations, importance-sampled BSDF’s, Russian
roulette on shadow rays, and several other optimizations.

Figure 5 shows a test scene with difficult indirect light-
ing. For equal computation times, Metropolis light transport
gives far better results than bidirectional path tracing. No-
tice the details that would be difficult to obtain with many
light transport algorithms: contact shadows, caustics under
the glass teapot, light reflected by the white tiles under the
door, and the brighter strip along the back of the floor (due
to the narrow gap between the table and the wall). This
scene contains diffuse, glossy, and specular surfaces, and the
wall is untextured to clearly reveal the noise levels.

For this scene, MLT gains efficiency from its ability to
change only part of the current path. The portion of the
path through the doorway can be preserved and re-used for
many mutations, until it is successfully mutated into a dif-
ferent path through the doorway. Note that perturbations
are not essential to make this process efficient, since the path
through the doorway needs to change only infrequently.

Figure 6 compares MLT against bidirectional path trac-
ing for a scene with strong indirect illumination and caus-
tics. Both methods give similar results in the top row of
images (where indirect lighting from the floor lamp domi-
nates). However, MLT performs much better as we zoom
into the caustic, due to its ability to generate new paths by
perturbing existing paths. The image quality degrades with
magnification (for the same computation time), but only
slowly. Notice the streaky appearance of the noise at the
highest magnification. This is due to caustic perturbations:
each ray from the spotlight is perturbed within a narrow
cone; however, the lens maps this cone of directions into an
elongated shape. The streaks are due to long strings of caus-
tic mutations that were not broken by successful mutations
of some other kind.

Even in the top row of images, there are slight differ-
ences between the two methods. The MLT algorithm leads
to lower noise in the bright regions of the image, while the
bidirectional algorithm gives lower noise in the dim regions.
This is what we would expect, since the number of Metrop-
olis samples varies according to the pixel brightness, while
the number of bidirectional samples per pixel is constant.

Figure 7 shows another difficult lighting situation: caus-
tics on the bottom of a small pool, seen indirectly through
the ripples on the water surface. Path tracing does not work
well, because when a path strikes the bottom of the pool,
a reflected direction is sampled according to the BRDF. In
this case, only a very small number of those paths will con-
tribute, because the light source occupies about 1% of the
visible hemisphere above the pool. (Bidirectional path trac-
ing does not help for these paths, because they can be gener-
ated only starting from the eye.) As with Figure 6, perturba-
tions are the key to sampling these caustics efficiently (recall
Figure 4). One interesting feature of MLT is that it obtains
these results without special handling of the light sources or
specular surfaces — see [16] or [3] for good examples of what
can be achieved if this restriction is lifted.

We have measured the performance of MLT relative to
path tracing (PT) and bidirectional path tracing (BPT), for
the same computation time. To do this, we computed the
relative error ej = (m̃j −mj)/mj at each pixel, where m̃j

is the value computed by MLT, PT, or BPT, and mj is the

(a) (b)

Figure 6: These images show caustics formed by a spotlight
shining on a glass egg. Column (a) was computed with bidi-
rectional path tracing using 25 samples per pixel, while (b)
uses Metropolis light transport with the same number of ray
queries (varying between 120 and 200 mutations per pixel).
The solutions include all paths of up to length 7, and the
images are 200 by 200 pixels.

value from a reference image (computed using BPT with a
large number of samples). Next, we computed the l1, l2,
and l∞ norms of the resulting error image (i.e. the array of
ej). Finally, we normalized the results, by dividing the error
norms for PT and BPT by the corresponding error norm for
MLT. This gave the following table:

Test Case PT vs. MLT BPT vs. MLT

l1 l2 l∞ l1 l2 l∞

Fig. 5 7.7 11.7 40.0 5.2 4.9 13.2

Fig. 6 (top) 2.4 4.8 21.4 0.9 2.1 13.7

Fig. 7 3.2 4.7 5.0 4.2 6.5 6.1

Note that the efficiency gain of MLT over the other methods
is proportional to the square of the table entries, since the

(a) Path tracing with 210 samples per pixel.

(b) Metropolis light transport with an average of 100 mutations per pixel [the same computation time as (a)].

Figure 7: Caustics in a pool of water, viewed indirectly through the ripples on the surface. It is difficult for unbiased Monte Carlo
algorithms to find the important transport paths, since they must be generated starting from the lens, and the light source only
occupies about 1% of the hemisphere as seen from the pool bottom (which is curved). The MLT algorithm is able to sample these
paths efficiently by means of perturbations. The images are 800 by 500 pixels.

error for PT and BPT decreases according to the square root
of the number of samples. For example, the RMS relative
error in Figure 5(a) is 4.9 times higher than in Figure 5(b),
and so approximately 25 times more BPT samples would
be required to achieve the same error levels. Even in the
topmost images of Figure 6 (for which BPT is well-suited),
notice that MLT and BPT are competitive.

The computation times were approximately 15 minutes
for each image in Figure 6, 2.5 hours for the images in Fig-

ure 7, and 4 hours for the images in Figure 5 (all times mea-
sured on a 190 MHz MIPS R10000 processor). The memory
requirements are modest: we only store the scene model,
the current image, and a single path (or a small number of
paths, if the mutation technique in Section 5.3.3 is used).
For high-resolution images, the memory requirements could
be reduced further by collecting the samples in batches, sort-
ing them in scanline order, and applying them to an image
on disk.

7 Conclusions

We have presented a novel approach to global illumination
problems, by showing how to adapt the Metropolis sampling
method to light transport. Our algorithm starts from a few
seed light transport paths and applies a sequence of ran-
dom mutations to them. In the steady state, the resulting
Markov chain visits each path with a probability propor-
tional to that path’s contribution to the image. The MLT
algorithm is notable for its generality and simplicity. A sin-
gle control structure can be used with different mutation
strategies to handle a variety of difficult lighting situations.
In addition, the MLT algorithm has low memory require-
ments and always computes an unbiased result.

Many refinements of this basic idea are possible. For ex-
ample, with modest changes we could use MLT to compute
view-independent radiance solutions, by letting the mj be
the basis function coefficients, and defining f(x̄) =

∑
j
fj(x̄).

We could also use MLT to render a sequences of images (as
in animation), by sampling the the entire space-time of paths
at once (thus, a mutation might try to perturb a path for-
ward or backward in time). Another interesting problem is
to determine the optimal settings for the various parameters
used by the algorithm. The values we use have not been ex-
tensively tuned, so that further efficiency improvements may
be possible. We hope to address some of these refinements
and extensions in the future.

8 Acknowledgements

We would especially like to thank the anonymous reviewers
for their detailed comments. In particular, review #4 led to
significant improvements in the formulation and exposition
of the paper. Thanks also to Matt Pharr for his comments
and artwork.

This research was supported by NSF contract number
CCR-9623851, and MURI contract DAAH04-96-1-0007.

References

[1] Arvo, J., and Kirk, D. Particle transport and image syn-
thesis. Computer Graphics (SIGGRAPH 90 Proceedings)
24, 4 (Aug. 1990), 63–66.

[2] Beyer, M., and Lange, B. Rayvolution: An evolutionary
ray tracing algorithm. In Eurographics Rendering Workshop
1994 Proceedings (June 1994), pp. 137–146. Also in Photo-
realistic Rendering Techniques, Springer-Verlag, New York,
1995.

[3] Collins, S. Reconstruction of indirect illumination from
area luminaires. In Rendering Techniques ’95 (1995),
pp. 274–283. Also in Eurographics Rendering Workshop 1996
Proceedings (June 1996).

[4] Cook, R. L., Porter, T., and Carpenter, L. Distributed
ray tracing. Computer Graphics (SIGGRAPH 84 Proceed-
ings) 18, 3 (July 1984), 137–145.

[5] Dutre, P., and Willems, Y. D. Potential-driven Monte
Carlo particle tracing for diffuse environments with adaptive
probability density functions. In Rendering Techniques ’95
(1995), pp. 306–315. Also in Eurographics Rendering Work-
shop 1996 Proceedings (June 1996).

[6] Goldberg, D. E. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, Reading, Mas-
sachusetts, 1989.

[7] Halmos, P. R. Measure Theory. Van Nostrand, New York,
1950.

[8] Heckbert, P. S. Adaptive radiosity textures for bidirec-
tional ray tracing. In Computer Graphics (SIGGRAPH 90
Proceedings) (Aug. 1990), vol. 24, pp. 145–154.

[9] Jensen, H. W. Importance driven path tracing using the
photon map. In Eurographics Rendering Workshop 1995
(June 1995), Eurographics.

[10] Kajiya, J. T. The rendering equation. In Computer
Graphics (SIGGRAPH 86 Proceedings) (Aug. 1986), vol. 20,
pp. 143–150.

[11] Kalos, M. H., and Whitlock, P. A. Monte Carlo Methods,
Volume I: Basics. John Wiley & Sons, New York, 1986.

[12] Lafortune, E. P., and Willems, Y. D. Bi-directional path
tracing. In CompuGraphics Proceedings (Alvor, Portugal,
Dec. 1993), pp. 145–153.

[13] Lafortune, E. P., and Willems, Y. D. A theoretical frame-
work for physically based rendering. Computer Graphics Fo-
rum 13, 2 (June 1994), 97–107.

[14] Lafortune, E. P., and Willems, Y. D. A 5D tree to re-
duce the variance of Monte Carlo ray tracing. In Rendering
Techniques ’95 (1995), pp. 11–20. Also in Eurographics Ren-
dering Workshop 1996 Proceedings (June 1996).

[15] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,

Teller, A. H., and Teller, E. Equations of state calcu-
lations by fast computing machines. Journal of Chemical
Physics 21 (1953), 1087–1091.

[16] Mitchell, D. P., and Hanrahan, P. Illumination from
curved reflectors. In Computer Graphics (SIGGRAPH 92
Proceedings) (July 1992), vol. 26, pp. 283–291.

[17] Pattanaik, S. N., and Mudur, S. P. Adjoint equations and
random walks for illumination computation. ACM Transac-
tions on Graphics 14 (Jan. 1995), 77–102.

[18] Peskun, P. H. Optimum monte-carlo sampling using markov
chains. Biometrika 60, 3 (1973), 607–612.

[19] Reif, J. H., Tygar, J. D., and Yoshida, A. Computability
and complexity of ray tracing. Discrete and Computational
Geometry 11 (1994), 265–287.

[20] Shirley, P., Wade, B., Hubbard, P. M., Zareski, D.,

Walter, B., and Greenberg, D. P. Global illumination
via density-estimation. In Eurographics Rendering Work-
shop 1995 Proceedings (June 1995), pp. 219–230. Also in
Rendering Techniques ’95, Springer-Verlag, New York, 1995.

[21] Shirley, P., Wang, C., and Zimmerman, K. Monte Carlo
methods for direct lighting calculations. ACM Transactions
on Graphics 15, 1 (Jan. 1996), 1–36.

[22] Spanier, J., and Gelbard, E. M. Monte Carlo Principles
and Neutron Transport Problems. Addison-Wesley, Reading,
Massachusetts, 1969.

[23] Veach, E. Non–symmetric scattering in light transport al-
gorithms. In Eurographics Rendering Workshop 1996 Pro-
ceedings (June 1996). Also in Rendering Techniques ’96,
Springer-Verlag, New York, 1996.

[24] Veach, E., and Guibas, L. Bidirectional estimators for
light transport. In Eurographics Rendering Workshop 1994
Proceedings (June 1994), pp. 147–162. Also in Photorealistic
Rendering Techniques, Springer-Verlag, New York, 1995.

[25] Veach, E., and Guibas, L. J. Optimally combining sam-
pling techniques for Monte Carlo rendering. In SIGGRAPH
95 Proceedings (Aug. 1995), Addison-Wesley, pp. 419–428.

[26] Whitted, T. An improved illumination model for shaded
display. Communications of the ACM 32, 6 (June 1980),
343–349.

Appendix A

To prove that (12) is unbiased, we show that the following identity
is satisfied at each step of the random walk:∫

IR
w qi(w, x̄) dw = f(x̄) , (16)

where qi is the joint probability distribution of the i-th weighted
sample (Wi, X̄i). Clearly this condition is satisfied by q0, noting
that q0(w, x̄) = δ(w − f(x̄)/p0(x̄)) p0(x̄) (where δ denotes the
Dirac delta distribution).

Next, observe that (4) is still true with pj replaced by qj(w, x̄)
(since the mutations set Wi = Wi−1). Multiplying both sides of
(4) by w and integrating, we obtain∫

IR
w qi(w, x̄) dw =

∫
IR
w qi−1(w, x̄) ,

so that (16) is preserved by each mutation step.
Now given (16), the desired estimate (12) is unbiased since

E[Wi wj(X̄i)] =
∫

Ω

∫
IR
w wj(x̄) pi(w, x̄) dw dµ(x̄)

=
∫

Ω
wj(x̄) f(x̄) dµ(x̄) = mj .

