
Game Engines
CMPM 164, F2019

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Montana Fowler (TA)
mocfowle@ucsc.edu

Website: creativecoding.soe.ucsc.edu/courses/cmpm164
Slack: https://ucsccmpm164.slack.com

Lab Sessions
Lab:
Ming Ong Computer Center, Windows Lab – Merrill 103

Tuesdays 11am-12noon
Wednesdays 3pm-4pm
Thursdays 1pm-2pm
(Montana’s office hours are also held during the Thursday lab)

Lab website / Direction:
https://its.ucsc.edu/computer-labs/descriptions/mingong.html

Ray Tracing
1968 - Arthur Appel, first ray casting implementation
1979 - Turner Whitted, first recursive ray tracing algorithm,
including additional bounces to calculate reflection, refraction, and
shadows
1982 - Ohmura Kouichi, Shirakawa Isao and Kawata Toru, first
animated ray tracing prototype on a supercomputer
1984 - Robert Cook, Tom Porter, and Loren Carpenter extended
ray tracing to render “fuzzy” phenomena, such as motion blur and
soft shadows
2018 - Nvidia introduces consumer GPUs that support real-time ray
tracing

Difference between Rasterization and Ray Tracing

Rasterization:
The ubiquitous rendering pipeline that is implemented by all

graphics frameworks and game engines. For every object in the 3D
world space that is visible to the camera, the object is projected
onto the 2D image plane (using a vertex shader) and then a
fragment shader decides what color to “shade” the pixel (based on
information about the world and the object that’s been passed into
the shader – e.g., lights, texture maps, etc).

That is, processing starts from the object, whereas in ray tracing,
processing starts from a ray.

Definitions
Ray Casting:

Finding the closest object along a ray, e.g., from the camera into
a scene to see what object is visible to the viewer, or from an
object toward a light source, to check if that object is in shadow.

Ray Marching:
Finds the intersection with an implicitly defined object along a

ray, and then ”marches” along the ray, sampling the values inside
the object to render a volume.

Definitions
Ray Tracing:

Uses ray casting to recursively spawn and then gather contributions
of light from reflective and refractive objects. The rays are evaluated
to determine the final color of the pixel on the image plane that cast
the first ray.

“Classic” Ray Tracing:
A single ray is cast for each pixel in the image plane, all surfaces are

perfectly shiny or smooth, and all lights are point lights.

Stochastic Ray Tracing:
Multiple rays are spawned at each bounce, e.g., to model area

lights which produce soft shadows, and to model more complex
materials.

Path Tracing:
Provides a more physically accurate representation of light,

which can bounce off of surfaces as well as emanate directly from
light sources, and models materials uses a BRDF to describe the
probability of a photon to bounce in a particular direction.

BRDF:
The Bidirectional reflection distribution function takes an

incoming light direction and an outgoing direction, and returns the
amount of reflected radiance exiting along the outgoing direction,
relative to the irradiance from the incoming light direction.

Definitions

1: Create a simple scene using Unreal Engine (due 10/6)

2: Implement a classic Whitted recursive ray tracer (due 10/15)

Homework 2

- 1. Calculate Rays from Camera through each pixel of the Image
Plane into 3D Scene

- 2. Calculate intersection point with closest 3D object
- 3. Depending on the object’s material:

- Calculate color at point by casting a ray towards each light to
determine diffuse and specular contributions

- Cast a reflection ray, go to step 2
- Cast a refraction ray, go to step 2

- 4. Combine information from recursively cast rays, check if
object is in shadow, return final color

Homework 2

- 3. Depending on the object’s material:
- Calculate color at point by casting a ray towards each light
- Cast a reflection ray, go to step 2
- Cast a refraction ray, go to step 2

Next week, we’ll go over how to calculate the diffuse + specular
components & how to calculate the reflection and refraction rays

Homework 2

PPM files:

P3
3 2
255
The part above is the header
"P3" means this is a RGB color image in ASCII
"3 2" is the width and height of the image in pixels
"255" is the maximum value for each color
The part below is image data: RGB triplets
255 0 0 0 255 0 0 0 255
255 255 0 255 255 255 0 0 0

You’ll see a lot of examples that use “P6” - an RGB color image in bytes
“If the PPM magic identifier is "P6" then the image data is stored in byte format, one byte per
colour component (r,g,b)” - Paul Bourke

Homework 2

