
Game Engines
CMPM 164, F2019

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Montana Fowler (TA)
mocfowle@ucsc.edu

Website: creativecoding.soe.ucsc.edu/courses/cmpm164
Slack: https://ucsccmpm164.slack.com

Lab Sessions
Lab:
Ming Ong Computer Center, Windows Lab – Merrill 103

Tuesdays 11am-12noon
Wednesdays 3pm-4pm
Thursdays 1pm-2pm
(Montana’s office hours are also held during the Thursday lab)

Lab website / Direction:
https://its.ucsc.edu/computer-labs/descriptions/mingong.html

1: Create a simple scene using Unreal Engine (due 10/6)

2: Implement a classic Whitted recursive ray tracer (due 10/15)

Homework 2

- 1. Calculate Rays from Camera through each pixel of the Image
Plane into 3D Scene

- 2. Calculate intersection point with closest 3D object
- 3. Depending on the object’s material:

- Calculate color at point by casting a ray towards each light to
determine diffuse and specular contributions

- Cast a reflection ray, go to step 2
- Cast a refraction ray, go to step 2

- 4. Combine information from recursively cast rays

Homework 2

PPM files:

P3
3 2
255
The part above is the header
"P3" means this is a RGB color image in ASCII
"3 2" is the width and height of the image in pixels
"255" is the maximum value for each color
The part below is image data: RGB triplets
255 0 0 0 255 0 0 0 255
255 255 0 255 255 255 0 0 0

You’ll see a lot of examples that use “P6” - an RGB color image in bytes
“If the PPM magic identifier is "P6" then the image data is stored in byte format, one byte per
colour component (r,g,b)” - Paul Bourke

See https://www.scratchapixel.com/code.php?id=3 for an example C++ code to write out to a
PPM file

Homework 2

https://www.scratchapixel.com/code.php?id=3

Given an eye position and an image plane, how do you calculate
the ray from the eye through each pixel?

Another way of saying this is: How do you move between raster
space or pixel space to world space?

(in class explanation on chalkboard…)

Once you have the pixels in World Space, you can create a ray from
the Camera through the pixel into the 3D scene.

Pixels to World Space

- Ray-Sphere intersection

- Ray-Triangle intersection

(in class explanation on chalkboard…)

See:
https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-
tracer-rendering-simple-shapes/ray-sphere-intersection

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-
rendering-a-triangle/why-are-triangles-useful

https://www.iquilezles.org/www/articles/intersectors/intersectors.htm

Calculating Intersections

https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/why-are-triangles-useful
https://www.iquilezles.org/www/articles/intersectors/intersectors.htm

Once we’ve detected an intersection point, how do we figure out
what color that point is?

Phong shading
A computationally inexpensive approximation of light that

includes both diffuse and specular components

Calculating color at intersections

Diffuse calculation:

Requires Normal vector and Light vector

DiffuseContribution =
diffuseColor * max((Normal . Light), 0.0)

The diffuse term is largest when the normal and the light are
parallel. The diffuse term is 0 when the normal and the light are >=
perpendicular.

Calculating color at intersections

Specular calculation:

Requires Reflect vector and View vector. That is, it can change based
on the position of the camera

SpecularContribution =
specularColor * (Reflect . View)^shininessFactor

The specular term is large only when the viewer direction is aligned
with the reflection direction. The highlights are sharper the greater the
shininessFactor is.

(Reflect vector is calculated using Light vector and Normal vector)

Calculating color at intersections

Alternative Specular calculation:

Requires Normal vector and a Half vector that is in between the
View and the Light vectors.

SpecularContribution =
specularColor * (Normal . Half)^shininessFactor

The specular term is large only when the viewer direction is aligned
with the reflection direction. The highlights are sharper the greater
the shininessFactor is.

Calculating color at intersections

Calculate diffuse and specular contribution for each light and add
them together

Check if light is not occluded by another object, otherwise move to
next to light. If all lights are occluded, then the point is completely
in shadow.

Calculating color at intersections

Reflection, Refraction, Recursion …

Next class

