
Game Engines
CMPM 164, F2019

Prof. Angus Forbes (instructor)
angus@ucsc.edu

Montana Fowler (TA)
mocfowle@ucsc.edu

Website: creativecoding.soe.ucsc.edu/courses/cmpm164
Slack: https://ucsccmpm164.slack.com

Also called “indirect illumination” because it includes light that
bounces off or through material, in ways that are difficult to simulate
using only textures and screen-space methods, and that are more
computationally intensive than classic ray tracing (ie, require more
rays).

“Classic” ray tracing makes assumptions:

- That all lights are point lights
- That every photon that hits a surface reflects or refracts through it in
the same way / that you only need to model a single photon, and that
single photon can “split” into two.
- That objects without a direct path from the reflection vector to the
light will be completely in shadow (or lit up using a generic “ambient”
term)

Global Illumination

See: https://morgan3d.github.io/advanced-ray-tracing-course

“Color Bleeding”
“Diffuse Interreflection”

“Soft Shadows”

“Indirect Lighting”

“Ambient Occlusion”

“Transmission”

“Glossy Reflection”

“Caustics”

“Caustics”

In 1981, James Kajiya introduced the concept of the Rendering
Equation, an attempt to define the main components that are
necessary to model in order to create a physically realistic scene.

The equation defines the radiance leaving a particular point as
equal to the sum of emitted radiance plus reflected radiance

Path tracing

The Rendering Equation

Outgoing light Incoming lightEmitted light Material

Lo(X, !̂o) = Le(X, !̂o) +

Z

S2

Li(X, !̂i) fX(!̂i, !̂o) |!̂i · n̂| d!̂i
<latexit sha1_base64="vHp3pYVBDCJiojewGKAxf4WOmrU=">AAAC9HicfVJLb9NAEF6bVwmPpuXIZUWElAoU2QEJLpUqeuHAoQjSRoqDtV6Pk1X3YXbHlSLX+Ru9cAAhrvwYbvwb7CQSoW0YaaVP30MzO7tJLoXDIPjt+Tdu3rp9Z+tu6979Bw+32zu7x84UlsOAG2nsMGEOpNAwQIEShrkFphIJJ8npYaOfnIF1wuiPOMthrNhEi0xwhjUV73itd3GkGE6tKk3VHT6n0ZRhGRkFE1atSXuU7tO/Xvi/9xmNhMa4XHBJVn6oPvWrtbho4temRbU3z+Jhd4O4uef8fEOERjw1uMzp6nyebvC14nYn6AWLoldBuAIdsqqjuP0rSg0vFGjkkjk3CoMcxyWzKLiEqhUVDnLGT9kERjXUTIEbl4tHq+jTmklpZmx9NNIFu54omXJuppLa2YzoLmsNeZ02KjB7PS6FzgsEzZeNskJSNLT5ATQVFjjKWQ0Yt6KelfIps4xj/U+aJYSXr3wVHPd74Yte//3LzsGb1Tq2yGPyhHRJSF6RA/KWHJEB4d5n78L76n3zz/wv/nf/x9Lqe6vMI/JP+T//APjR9Lg=</latexit>

The Rendering Equation

A point in the scene

Outgoing direction Incoming direction

All incoming directions
(a sphere)

Lo(X, !̂o) = Le(X, !̂o) +

Z

S2

Li(X, !̂i) fX(!̂i, !̂o) |!̂i · n̂| d!̂i
<latexit sha1_base64="vHp3pYVBDCJiojewGKAxf4WOmrU=">AAAC9HicfVJLb9NAEF6bVwmPpuXIZUWElAoU2QEJLpUqeuHAoQjSRoqDtV6Pk1X3YXbHlSLX+Ru9cAAhrvwYbvwb7CQSoW0YaaVP30MzO7tJLoXDIPjt+Tdu3rp9Z+tu6979Bw+32zu7x84UlsOAG2nsMGEOpNAwQIEShrkFphIJJ8npYaOfnIF1wuiPOMthrNhEi0xwhjUV73itd3GkGE6tKk3VHT6n0ZRhGRkFE1atSXuU7tO/Xvi/9xmNhMa4XHBJVn6oPvWrtbho4temRbU3z+Jhd4O4uef8fEOERjw1uMzp6nyebvC14nYn6AWLoldBuAIdsqqjuP0rSg0vFGjkkjk3CoMcxyWzKLiEqhUVDnLGT9kERjXUTIEbl4tHq+jTmklpZmx9NNIFu54omXJuppLa2YzoLmsNeZ02KjB7PS6FzgsEzZeNskJSNLT5ATQVFjjKWQ0Yt6KelfIps4xj/U+aJYSXr3wVHPd74Yte//3LzsGb1Tq2yGPyhHRJSF6RA/KWHJEB4d5n78L76n3zz/wv/nf/x9Lqe6vMI/JP+T//APjR9Lg=</latexit>

The Rendering Equation

The more common approaches these days use Monte Carlo
methods. Monte Carlo is the name of town in Monaco with a
famous casino, and the term evokes the probabilistic nature of how
the algorithm operates.

In Monte Carlo methods you attempt to render the most likely light
paths by taking lots of samples, where the more samples you take
the more likely you are to get an accurate rendering of a scene.

Monte Carlo

“Caustics”

Some of the most advanced approaches attempt to create nice
looking scenes quickly by taking less samples through 3D space,
and then applying a fast 2D image denoising on the render buffer.

Real-time ray tracing makes use of sophisticated denoising
algorithms, and is still an active area of research. The image
denoising often uses a neural network that encodes a (temporally
coherent) smoothing filter.

Denoising

Path Tracing is similar in spirit to ray tracing:
Rays are cast from a virtual camera and traced through a

simulated scene.
Path tracing uses random sampling to incrementally compute a

final image.
This makes it possible to render complex phenomena not

handled in regular ray tracing.

However, it takes a longer time to produce a high quality path
traced image.

Path tracing

Path tracing, sometimes referred to as Monte Carlo ray tracing,
renders a 3D scene by randomly tracing samples of possible light
paths.

Repeated sampling of any given pixel will eventually cause the
average of the samples to converge on the correct solution of the
rendering equation.

Path tracing

In the real world, objects and surfaces are visible due to the fact
that they are reflecting light. This reflected light then illuminates
other objects in turn.

- For a given indoor scene, every object in the room must
contribute illumination to every other object.
- There is no distinction to be made between illumination emitted
from a light source and illumination reflected from a surface.
- The illumination coming from surfaces must scatter in a particular
direction that is some function of the incoming direction of the
arriving illumination, and the outgoing direction being sampled.

Path tracing

Doesn’t handle some things perfectly without additional
computation:

- Caustics
- Subsurface scattering
- Fluorescence and iridescence, where light behaves

differently at different spectrums.

A small number of smaller bright lights can lead to
noise because paths are less likely to intersect those
lights, and the ones that do get overweighted… leading
to “fireflies"

Path tracing

A 1997 paper by Eric Veach and Leonidas Guibas
discusses ”Metropolis light transport”, a method of
perturbing previously found paths in order to increase
performance for difficult scenes.

- The core idea here is that rather than sampling at
random, you mutate the previous paths that make it
from the light to the camera in the fewest bounces.

- Use bidirectional ray tracing – both from the light
(”shooting”) and from each surface point
(“gathering”).

Speeding up path tracing

“Importance sampling”:

Decide how the sampling is more likely to occurs in the scene. Bias
the direction of the rays to make sure most samples are likely to be
brightly lit.

- On a material, we looked at BRDFs where more energy was
seen from the specular highlighting — so sample there more often.

- From a light, create more samples from brighter lights
- Render a few samples at random and select the ones that

contributed to brighter pixels and sample in those directions more
often

Speeding up path tracing

- When choosing randomly, use a random number generator that
has nicer properties

- You may have heard the term “blue noise” which describes a
way of more effective random sampling that won’t
introducing artifacts like stripes or checkerboards that could appear
if the sampling was more uniform.

Blue noise was biologically motivated, John Yellott (1983) found
the monkey photoreceptor cells on retinas of monkeys are ordered
using blue noise.

Speeding up path tracing

Radiosity uses techniques from dynamics and numerical simulation,
based on “finite element methods”, an approach to discretizing
energy through space (and which you may come across if you are
doing fluid simulation).

The original version of the radiosity rendering algorithm (by Cindy
M. Goral, Kenneth E. Torrance, Donald P. Greenberg and Bennett
Battaile in 1984) assumed that all surfaces were “perfectly diffuse”:

“[Radiosity is…] a method which can be used to determine the
intensity of light diffusely reflected within an environment.“ Goral
et al.

Radiosity

A 1996 paper by Henrik Wann Jensen introduced Photon Mapping.

Photons (similar to a ray) emitted from lights… stored in a “photon
map” when it hits a surface. The maps from the light’s point of view
Only store the incoming energy from the light — NOT the radiance
emitted from bouncing off of the material, (so less computationally
expensive…)

Then do backwards ray tracing…
Use the photon map to approximate radiance if a “simple”

material (diffuse)
If glossy, or more complex, then query the BRDF and take

additional samples…
Additional steps: Shadow photons + Caustic mapping

Photon Mapping

Volumetric path tracing was first introduced in 1997 by Lafortune
and Willems.
This method enhances the rendering of the lighting in a scene by
extending the path tracing method with the effect of light
scattering. It is used for photorealistic effects of participating
media like fire, explosions, smoke, clouds, fog or soft shadows.
As in the path tracing method a ray gets followed backwards,
beginning from the eye on, until reaching the light source. In
volumetric path tracing scatter events can occur while these
process. When a light ray hits a surface, a special amount of it can
get scattered into the media.

Volumetric path tracing

