Gotta Generate ’em All! Pokemon (With Deep Learning)

Devi Acharya*
University of California, Santa Cruz
dacharya@ucsc.edu

Beth Oliver*
University of California, Santa Cruz
elaolive@ucsc.edu

ABSTRACT

When using multiple generators to construct content, it is important
to ensure that each generated part forms a cohesive whole. We focus
on generating trading cards based on an existing set of Pokemon
cards, generating text and images by training different machine
learning algorithms on the original card data. We also use the
original card data to train classifiers that sort images and text by
each Pokemon’s elemental type. We can use these classifiers to sort
generated images, names, and attacks for cards into the existing
elemental types. We theorize that by using a pipeline of image and
text generation and then classification, we can create trading cards
with a consistent design akin to existing cards in the game.

CCS CONCEPTS

« Computing methodologies — Neural networks.

KEYWORDS
datasets, neural networks, image generation, text generation, games

ACM Reference Format:

Devi Acharya, Rehaf Aljammaz, Beth Oliver, and Mirek Stolee. 2020. Gotta
Generate ’em All! Pokemon (With Deep Learning). In ,. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Machine learning has been used to create novel text and images
based on sets of data. Where machine learning is currently less
successful is in creating generated objects with different, consistent
parts. While some work has been done creating different generated
elements that work well together, such as generated images to
match captions or vice versa, or some forms of card text and images,
we examine how we can use classifiers on generated content in
order to create cards with an overall consistent design. In other
words, to use classifiers to find images and text that complement
and make sense together.

“all authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CMPS 202’19, Final Project

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Rehaf Aljammaz"
University of California, Santa Cruz
raljamma@ucsc.edu

Mirek Stolee**
University of California, Santa Cruz
mstolee@ucsc.edu

For this project, we focus on the generation of trading cards using
data from existing cards in the Pokemon trading card game. The
Pokemon trading card game has thousands of cards with unique
names, card art, and sets of attacks, each featuring an elemental
"type" that is distinct from other types in abilities and style. Being
able to generate these cards, rather than hand-author art, attacks,
and the overall design of the card, would significantly reduce the
labor required to make such cards. That said, the cards generated
through this project do not yet achieve the same level of quality
shown in human-authored cards. The goal of this project is to
explore how we can use existing machine learning techniques in
combination with image and text classification techniques in order
to generate Pokemon trading cards in which the generated parts
make sense together and the card overall is something emblematic
of an original card from the trading card game.

Being able to generate such cards has interesting implications.
Firstly, it will help us better understand features that are common
to each Pokemon type. By examining how well Pokemon card
images and text can be classified, we can assess the accuracy of
such classification to see how distinct each type is, and possibly
identify which features are used to distinguish card types from one
another. Secondly, we can examine how the method of classifying
generated content creates cards that are more consistent overall,
since individual elements such as name, image, and attacks are all
classified into the same type. Finally, we can compare generated
trading cards to existing trading cards in game to see in what
ways the different methods of generation failed, and what can be
improved on in later work.

2 PROBLEM STATEMENT

Our intent in developing this project is twofold. The first is to ex-
plore various machine learning methodologies for creating novel
text and images based on existing data, focusing on neural networks
and classification for generation and categorization of new artifacts.
The second purpose is blending generated artifacts together to cre-
ate a new, cohesive product. We chose playing cards as a platform,
specifically the Pokemon playing cards, as we believe that cards
hold structures fit for text generation, rule constraints, and [21]
pose a challenging problem. In the following sections, we present
similar work, our data collection methodology, model, implemen-
tation approaches taken, and finally, the paper ends by discussing
our concluding thoughts and the limitations posed in this project.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CMPS 202’19, Final Project

3 RELATED WORK

Previous researchers [15, 21] have used card games as platforms
within the machine learning domain. The authors [21] analyzed
textual and visual information on playing card games, specifically
Magic the Gathering through neural networks. They introduced
a methodology for linking generated text to a given input image
through classification means. Ling et al. [15] introduced the latent
neural network; one of the main contributions of this paper is
the network’s ability to generate minimized code. The authors
used digital game cards, specifically from the trading card games
Magic the Gathering and Hearthstone, to generate text and the
accompanying code as a way to validate their model [15]. Others
have even designed card generation tools, ex. Mystical Tutor, by
taking in user input and generating designed cards [17].

This paper presents both text and image generation methods.
We mainly used recurrent neural networks, specifically char-rnn,
for text generation, and tested out different generative adversarial
networks (GANs) for image generation. Authors have improved re-
current neural networks (RNNs) in generating text. Graves showed
the potential of generating sequential text using Long Short-term
Memory (LSTM) as a basis and predicting upcoming text in complex
textual structures [11]. Furthermore, authors have coupled an RNN
with their Hessian-Free optimizer (HF) in creating character-based
models [18], further contributing to the text generation domain.

Goodfellow et al. introduced the concept of GANs [10]. Other
researchers have furthered the cause in developing different vari-
ations of GANS, including layering networks used in generating
high-resolution images and captioned image results with stackgan
[10], improving performance and functionality with the Wasser-
stein Gan (WGAN) [9] and finally, image translation by taking in
an outline or a silhouette and producing an image in pix to pix [13].

4 DATA COLLECTION

4.1 Dataset Extraction for card images and text
assets

We collected a set of 6,534 trading cards using the Pokemon TCG
Developers API [1]. The Pokemon Trading Card Game [8] has sev-
eral "supertypes" of cards, including Pokemon cards, Trainer cards,
and Energy cards. The central mechanic of the game is centered
around each player using "Pokemon" cards to fight, with "Trainer"
and "Energy"” cards supporting them. Cards in the "Pokemon" su-
pertype also have a fairly homogeneous structure, sharing common
elements such as attacks. Due to these features, we decided to fo-
cus on collecting and generating cards of this supertype. We used
the API to access cards of supertype "Pokemon," downloading the
relevant card images and text for names and attacks.

Both images and text pulled from the database were then sorted
using the elemental "type" of the card. Most cards have a single
type, and we only used the first type of those that have two. In
general, card art, names, and attacks are common to cards of certain
elemental types. For example, the fire type Pokemon card "Mag-
mar" borrows its name from the word "magma" and has volcanic
attacks like "eruption” and "combustion”. The card art for "Magmar"
primarily features the color red, a common element across many
fire type cards. While not all card features are this closely-linked to

Devi Acharya, Rehaf Aljammaz, Beth Oliver, and Mirek Stolee

their type, there is enough of a correlation that our classifier has
some success sorting them by type.

As some of the types have many more cards than others, we con-
densed the eleven types down to seven to achieve more similarity
in size between categories for better training and classifying. We
added the "Darkness" type to the "Psychic" dataset, the "Dragon"
type to the "Water" dataset, the "Fairy” type to the "Colorless"
dataset, and the "Metal" type to the "Fighting" dataset.

We then performed some processing on the data in order to aid
in the classifier training process and the generation process. For
images, we sorted each image into a folder by its type, so that the
classifier could then be trained to distinguish images of certain types
from one another. The original card images featured the entirety
of the trading card, including images of the text on the card and
other extraneous information. Because we wanted our GAN and
classifier to only use the image of the Pokemon itself (see Figure
3, "card art"), we cropped each card image down to only show the
Pokemon’s illustration.

"Pikachu

® Plasma 10
Flip a coin. If heads, search your discard
pile for a 4) Energy card and attach it to
Pikachu.

p— fne— Fetreat cast

[T SR

Figure 1: The entire trading card

Figure 2: Our cropped image of the original card, showing
only card art

For the text, we used the API to extract each Pokemon name and
attack, putting them into comma-separated values (CSV) text files
labeled with each type for later processing. For the names, this is
simply a CSV of the Pokemon’s type, then a comma separating the
type from the Pokemon’s name, in the format "type, name". For the
attack, we accessed a dictionary through the API containing all of
the information about each attack (cost, name, text, and damage)
and wrote those to a CSV with double quotes surrounding the

Gotta Generate ’em All! Pokemon (With Deep Learning)

Heal a8 damage from all of your Pokémon. Shuffle

@ %% Stun Spore 60 @ x % Stun Spore 60
Flip a coin. If heads. your oppanent’s Active Pokémon is Fip 3 coin If heads. your opponent’s Active Pokémon &
now Paralyred. now Paralyzed

oy T |

r-....._. P ——

T T

Figure 3: (Left) A typical Pokemon trading card; (Right) Dif-
ferent sections of the trading card outlined: Top left, name;
top right, type; center, card art; bottom, attack

attack text so that commas in the body of the card would not be
interpreted as a new item in the CSV.

Grass,'['Grass’],Absorb,Remove 1 damage counter
from Turtwig.,10"

Above is an example of the attack text of a card in CSV format,
first listing the type, then the body of the attack text-attack cost,
name, description, and damage

Finally, we created a JavaScript Object Notation (JSON) structure
for names and attacks to use in text classifier validation, using the
same data as contained in the CSV.

"o non

"type": "Psychic", "description”: "['Psychic’, "Psy-
chic’, 'Psychic’],Dark Flash, This attack’s dam-
age isn’t affected by Resistance.’, 120"

4.2 Other data sets

As an alternative approach for image generation, we used a Poke-
mon data set provided by a Github user kvpratama [14]. This data
set includes images of 800 Pokemon sprites with transparent back-
grounds. We are using this set as an alternative way of generating
Pokemon and reducing noise that may be provided by background
art located in cards. This sample is used with a wgan. The base
Github code was provided by siraj’s pokegan generator [16].

5 IMPLEMENTATION
5.1 System Model

By examining the trading cards extracted through the Pokemon
TCG API, we were able to find certain features common across
Pokemon cards that we could then use to generate new cards. For
instance, most cards of supertype "Pokemon" have a type, name,
list of attacks, and an image of that Pokemon, all of which are
important for determining who the Pokemon is, and their abilities
(Figure 4). We used this to decide what parts of the trading cards
to generate, using a recurrent neural network (RNN) to generate
text for Pokemon names and attacks, and a generative adversarial
network (GAN) to generate images.

CMPS 202’19, Final Project

Pokemon Name

Card art

Cost Attack name Damage
Attack text

Figure 4: Our model for generated cards, where red sections
will be generated.

Char-RNN
inpuiley Werams

i Generated
Text list of e
Pokemon type, ot
attack
inputted
d\ Text
train classifier by

type

|

Generated card attack
and type

Figure 5: Our model for generating and classifying Pokemon
attacks by type. A similar model was used for names.

Find generated
name classified
into type

Create
generated card
of given type
with generated
name, image,
attacks

Pick Pokemon .Find genergted
type from list of image classified
existing types into type

Find generated
attacks classified
into type

Figure 6: Complete pipeline for generating a Pokemon card
from various generated components using classifiers.

6 GENERATION

6.1 Image Generation

We investigated three different models for generating images.

CMPS 202’19, Final Project

Figure 7: Left: Pokemon sprite without a background. Right:
Card art of the same Pokemon.

Figure 8: Left: Target image. Right: Input image (obtained by
running target through CV2 Canny edge detection).

The first was a Generative Adversarial Network (GAN) written
by Manu Mathew Thomas [19]. The training data set included the
Pokemon card image set of 6,534 images. The generator was made
up of three hidden layers while the discriminator was made up of
four. This GAN was trained on a batch size of 5 over 150k iterations.

Our second attempt at image generation was a Wasserstein GAN
[9] written by Siraj Raval [16]. According to Siraj[2] the WGan
provides better results as it implements a better alternative to the
fitness function by decreasing the Wasserstein distance. We trained
the two models with Siraj’s WGan implementation each on a differ-
ent data set. The first model was trained on 800 images of Pokemon
sprites without any backgrounds over 2800 epochs. We trained this
model using a remote GPU provided by Floydhub[E]. The training
process entailed 30 hours on a High Performance 12-16 GB Mem-
ory GPU with a Tesla V100 chip. The second was trained on 6800
images of Pokemon cards over 800 epochs on our professor’s lab’s
computer over 48 hours. Both models trained with a batch size of
64. Figure 7 illustrates the image samples used in the pokeGAN,
left to right shows the Pokemon sprite and a Pokemon card used in
the process.

Finally, pix to pix [12] was our final attempt in image generation.
This approach focused on an image’s edges and silhouette providing
a better distinction of the object from the background. We used
the Pokemon card image set as a training data by first running it
through a CV2 Canny edge detection script and using the produced
output as an input into the GAN. We used a model provided by [3]
and trained the model on 5200 images. Figure 8 illustrates a sample
input and target image.

6.2 Text Generation

We generated text using Sherjil Ozair’s TensorFlow implementa-
tion [4] of Andrej Karpathy’s Char-RNN model [5]. This model, a

Devi Acharya, Rehaf Aljammaz, Beth Oliver, and Mirek Stolee

recurrent neural network, generates text character by character.
Two Char-RNN models were trained: one for card names and one
for attacks. The training data for the card name model consists of
the name of every card in the dataset, and the attack model training
set consists of the attack cost, the attack name, the description of
the attack, and a number representing the damage the attack deals
to the opposing Pokemon.

7 CLASSIFICATION

7.1 Image Classification

Our generated images were classified using Manu Mathew Thomas’
SimplelmageClassifier [20]. This convolutional neural network
sorts images. Our model was trained on the card art for each card
in our dataset, sorted by type.

7.2 Text Classification

We performed the text classification using Jie Zhang’s Multi-Class
Text Classification CNN [6]. This convolutional neural network
is used to sort text into a number of predetermined categories.
We again trained two models, one for names and one for attacks.
The dataset used for each model was the same as the dataset used
for the text generation for each field, with the addition that each
name and attack was associated with the elemental type of its card.
For example, the name "Bulbasaur" was associated with the grass
type because it appears on grass type cards, and the attack "Vine
Whip" from the same card is also associated with the grass type.
The models sort text into our seven types: "Colorless", "Fighting",
"Fire", "Grass", "Lightning", "Psychic", "Water". After training the
classifier on the existing set of names and attacks, we used it to
classify generated names and attacks into one of the given types.

8 CARD CREATION

To create cards from our generated content, we picked an elemen-
tal type and found a generated image, Pokemon name, and set of
attacks that were classified into the given type. We then used Poke-
mon Card Maker [7] to assemble each of these parts into a whole
card.

9 RESULTS
9.1 Text Generation

The names produced by the name generation model are generally
believable. Examples such as "Draquarina, "Liracion", and "Scentar"
fit in with human-authored names like "Chandelure" and "Vanil-
lite". The model also demonstrates understanding of specific name
structures. Cards in the original dataset such as "Sabrina’s Gen-
gar" refer to Pokemon that belong to a specific Pokemon trainer.
The model produces card names like "Turnha’s Gublir" that use
this structure. Additionally, while the model sometimes produces
names that already exist in the original dataset like "Slowking"
and "Growlithe", some of the Pokemon cards in the dataset already
share the same name. Producing additional cards with the same
name is not necessarily an issue.

The attack generator produces attacks that imitate the structural
format of the attacks in the dataset. The attacks generated have a

Gotta Generate ’em All! Pokemon (With Deep Learning)

cost in energy, an attack name, a description, and damage. They
are listed in that order within the attack text.

It also recognizes that not all attacks have all of these components.
For instance, simple attacks like "Tackle" in the training dataset do
not have a description and simply inflict the amount of damage
listed:

[’Colorless’, *Colorless’],Hang Wind,”,20

This generated attack, "Hang Wind", has no description text.
Other attacks might do no damage at all:

[’Colorless’, ’Colorless’, Colorless’],Surfen, Flip
a coin. If heads, your opponent discards the
top card of his or her deck. Shuffle your deck
afterward.,

This generated attack, "Surfen", has a written effect in the de-
scription but does not deal damage. The original dataset contains
instances of similar effects.

The attack generator could be improved in the future. Not all of
the generated attack descriptions make sense within the rules of
the game:

["Water’, ’Colorless’, "Colorless’],.Echaring Magma
Hy, Discard a Psychic Energy attached to this
Pok\u00e9mon. This attack does 10 damage
times the number of heads.’,20\u00d7

This attack, "Echaring Magma Hy", does not instruct the player
to flip any coins but does damage depending on the "number of
heads". This attack also illustrates an issue the model has handling
special characters. The "\u00e9" is a stand-in for the accented "e"
character in the game’s name, and the "\u00d7" stands in for the
small "x" character used in place of the word "multiply” in attack
descriptions. This can be fixed easily by replacing these stand-ins
with the proper characters.

9.2 Text Classification

The accuracy of the text classifiers can be assessed by running them
on a test sets of names and attacks set aside for this purpose. The
name classifier tests at an accuracy around 85%, and the attack
classifier performs at around 80%. Although the name classifier
ostensibly performs at a higher percentage, in reality the trained
model seems to converge on a singular type and then assign that
type to all testing data. This may be due to the fact that names are
much shorter than attacks, and usually singular words. This may
make it difficult for the classifier to differentiate between names. For
the generated cards in the next section, names were not classified.

9.3 Image Classification

As with the text classifier, the image classifier can be assessed by
running it on a set of images set aside for this. On this test set, our
classifier only preforms at 32%. This is initially fairly underwhelm-
ing results. However, upon a manual inspection of its guesses to the
card art the reason for this poor performance was, to some extent,
explained.

All Pokemon cards are based off of characters from the animation
and/or the video game series. In both other formats, typing is more
complicated, and many have two types. Consider Figure 9, this
particular Pokemon in the video game is dual typed "Water" and

CMPS 202’19, Final Project

| Bibarelus

)

Choene | of the Defending Pokirnon's anacks. Tha Pokémaon
't use that a6k Guring YOur Cppenens’s Nt fem, 3

—Surf-nina

Figure 9: An example of a Dual Typed Pokemon. This card
is typed as "Water", but in the animation and in the video
game, "Bibarel" is a "Normal/Water" type.

Figure 10: A sample output from our first attempt at gener-
ating images.

"Normal" ("Normal" is the video game equivalent to the card game’s
"Colorless"). The card was classified as "Colorless" which would
be accurate if looking at the Pokemon outside the very specific
context of the card game, and is in fact more representative of its
general design (most "Colorless” Pokemon are whiles, dull browns,
or pale pinks). To complicate maters, there are many different cards
featuring this Pokemon, some of which are "Colorless" and some
of which are "Water".

9.4 GANs

9.4.1 Manu Mathew Thomas’s. The first GAN results were unfa-
vorable. The resultant images arguably featured a central dotted
figure but lacked depth, lines, and features. Figure 10 illustrates
these initial results. We believe many factors contributed to these
results, insufficient training time and insufficient complexity in the
model’s structure being the most significant.

9.4.2 WGAN. As for Siraj’s WGAN model [16], the initial training
was done on a set of 100 card images for 2500 epochs, the resultant
image was colorful, arguably featuring a central figure with colors
separate from the background (Figure 11). We then trained the data

CMPS 202’19, Final Project

Devi Acharya, Rehaf Aljammaz, Beth Oliver, and Mirek Stolee

Figure 11: Two sample outputs from the WGAN trained on
100 images for 2500 epochs.

Figure 12: Two sample outputs from the WGAN trained on
6500 images for 800 epochs.

set with 6500 cards and for 800 epochs. We had hoped to train it
over more epochs than this, however, due to technical issues such
as training interruptions and corrupted checkpoints we had to end
it there. The results are not significantly greater than the first, but
that we got this far with more data in fewer epochs is promising.
As an alternative approach, we trained a version on a dataset
consisting of Pokemon sprites instead of Pokemon card images (see
Figure 7 for the difference). The results presented a clear outline for
some of the generated Pokemon, giving it a clear shape and a black
background color. We then classified the image based Manu Mathew
Thomas’s SimpleImageClassifer into the aforementioned types and
modified the black background color to fit that type instead.

9.5 Pix2Pix

Upon seeing the results of our GANs thus far, it was suggested
to us to try the pix2pix model [12]. As such, we trained a model
based on an implementation by "affinelayer” [3]. This model was
trained on 5200 card art images which had been run through an
edge detection algorithm. Training ran for 26 epochs over 4 days
on a CPU before time ran out on us again. Still, the results are not
terrible, somewhat washed out, but beginning to take the colors
one might expect.

Ideally, this could be used in conjunction with a model which gen-
erated edges to create better images. As things stands, we hooked
this model up with our previous GANS, their output run through
the same edge detection algorithm we used to create our training

Figure 13: A sample output from the WGAN trained on 800
images on a dataset of only Pokemon sprites on both a white
background (left) and a black background (right).

Figure 14: Left: Input to the pix2pix model. Right: Target.
Center: Output from the pix2pix model.

data. The results are still underwhelming, but perhaps promises
another direction to pursue in the future.

9.6 Completed Cards

Combining various results from text generation (RNNs) and image
generation (GANs) and classifying them we had a somewhat cohe-
sive overall look. While not perfect, there is a general shape, text
and color structure that we think fits with the type of classified
cards. As an example, the images in figure 15 were categorized as
Fighting/Ground types based on the classifier post generation. The
input image was from the Pokegan (card model version) both the
name, text and HP were also generated using the text generation
neural networks.

Gotta Generate ’em Alll Pokemon (With Deep Learning)

TS
Cull Swits Tris accack does 10 damage.
0 | of your opponent’s Benched
Pokemon. (Don't apply Weakness and
Resistance for Benched Pokemon.)

Spear Fiip a coin. If
heads, this attack does 60 damage 40+
plus 20 more damage.

Figure 15: Figure 15: From left to right: Worsola and Gordele
generated Fighting-type cards

Another example shows the Pokegan sprite version figure 16
and the accompanying generated image. The generated Pokemon
was classified as a psychic type. The color palette and shape, in our
opinion, matches the nature of the card with the only difference
being a more defined outline. All three samples have been passed
through the pix-to-pix model to get a more defined shape and
outline.

figure 16:

10 DISCUSSION AND LIMITATIONS

In the execution of this project we discovered a number of difficul-
ties with our dataset and limitations in our approach, in particular
in regard to card art and combining of all the elements in a har-
monious way, especially in contrast to other, superficially similar
projects.

In our attempts to classify and generate images for our cards we
discovered that the results were generally very colorful blobs. We
believe much of our difficulties in getting concrete images was in
the nature of our dataset. Although the animation and the video
game versions of Pokemon have distinct and consistent styles, the
art on the cards are from a wide range of people with little attention
placed toward creating a consistent style. Art ranges from an anime
style to 3D modeled to highly simplified art. In addition, Poke-
mon are displayed at dramatic, and wildly varying angles lessening
what similarities in silhouette there might have been. Furthermore,
card art can have many variations, on varied kinds of backgrounds,
sometimes featuring other extraneous characters (such as other
Pokemon, or trainers). Because of this, it may be harder for the clas-
sifier to detect and the GAN to recreate various features common
to different Pokemon.

Setting aside the challenges of generating and classifying images,
there are several structural elements of the card that should all make
sense when seen together. Our approach attempts to achieve such
harmony between elements by organizing all generated parts by
type. This approach assumes that all names, art, and attacks within
a type are interchangeable, but this may not be an entirely safe
assumption.

CMPS 202’19, Final Project

Figure 16: Figure 16: Ismilea a psychic Pokemon card

Consider the two Pokemon in Figure 18. On the left is feeble
Magikarp, on the right, mighty Gyarados. Both are "Water" types,
so for our purposes all their attacks would be "Water" as well.
Swapping their names would probably be fine in this case, odd to
someone familiar to the game, but not outlandishly so. "Flail" on
Gyarados probably would be fine too. "Dragon Spark” or "Pulverize"
on Magikarp though might result in some raised eyebrows.

Another factor we that should be mentioned is the difference
between Pokemon cards and other similar datasets, such as anime.
At a glance, both are stylized art, generally with large eyes and un-
realistic body proportions. However, anime characters have much
more uniformity between different characters, generally having the
same number limbs, similar—if exaggerated—body proportions, and
wide facial features. When compared to the variety in Pokemon
body structure, where even the number of heads the subject might
have is not standard, even setting aside the differences in art style,
it is little wonder we had such difficulties.

11 FUTURE WORK

We wonder whether more promising results could be obtained by
training our image generating algorithms on a subset of Pokemon
(for example, all Pokemon which look like dogs). Perhaps, if all
members of the dataset had more in common with each other, their
features could more efficiently be learned and Pokemon of that kind
(continuing the example, new dog-like Pokemon) might be created.

CMPS 202’19, Final Project

Figure 17: Right: "Target". An image generated by one of
the previously mentioned GANSs. Left: Input to the pix2pix
model created by running the right most image through our
edge detection algorithm. Center: Output from the pix2pix
model. Top 2: Input generated by the model trained on 6500
card art images. Third and Fourth Rows: Input generated by
the GAN trained on 100 card art images. Fifth Row: Input
generated by the model trained on 800 Pokemon sprites.

A different approach might involve how other online users han-
dled Pokemon generation. They drew and styled generated charac-
ters with the help of a human artist. Perhaps, this project can serve
as a stepping stone for card designers designing creatures.

There are also additional fields that our model does not generate.
Pokemon cards have a health point value and a height and weight
for the represented Pokemon, for example. Future attempts could
generate this data as well for a more complete card. Our model
also glosses over one of the core features of Pokemon, "evolution".
Future work could perhaps attempt to generate "evolutionary lines".

Devi Acharya, Rehaf Aljammaz, Beth Oliver, and Mirek Stolee

Figure 18: Left: Magikarp, comically weak. Right: Gyarados,
famously strong. Now imagine their move sets swapped.

12 CONCLUSION

We theorize that by grouping content generated by a variety of
different sources by classifying them into the same type, we can
create cards with an overall more consistent look and design than
cards with purely randomly generated content. We have only begun
to scratch the surface with the ways we have combined different
machine learning techniques, and we do not claim all of the combi-
nations we tried were a success. However, we hope that this might
provide a stepping stone for others to go further.

REFERENCES

[1] [n.d.]. https://pokemontcg.io/

[2] [n.d.]. https://www.youtube.com/watch?v=yz6dNf7X7SA
[3] [n.d.]. https://github.com/affinelayer/pix2pix-tensorflow

[5] [n.d.]. https://github.com/karpathy/char-rnn

[6] [n.d.]. https://github.com/jiegzhan/multi-class-text-classification-cnn

[7] [n.d.]. https://www.pokecard.net/

[8] [n. d.]. PokAlmon Trading Card Game Rules. https:/assets.pokemon.com/

/assets/cms2/pdf/trading-card-game/rulebook/sm9_rulebook_en.pdf

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein gen-

erative adversarial networks. In International Conference on Machine Learning.

214-223.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672-2680.

[11] Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850 (2013).

[12] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2016. Image-to-
Image Translation with Conditional Adversarial Networks. arxiv (2016).

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
image translation with conditional adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 1125-1134.

[14] kvpratama. 2018. Pokemon Images Dataset. https://www.kaggle.com/kvpratama/
pokemon-images-dataset

[15] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomas Ko¢isky, Andrew
Senior, Fumin Wang, and Phil Blunsom. 2016. Latent predictor networks for code
generation. arXiv preprint arXiv:1603.06744 (2016).

[16] Siraj Raval. 2018. Pokemon GAN. https://github.com/lISourcell/Pokemon_GAN

[17] Adam James Summerville and Michael Mateas. 2016. Mystical tutor: A magic:
The gathering design assistant via denoising sequence-to-sequence learning. In
Twelfth Artificial Intelligence and Interactive Digital Entertainment Conference.

[18] Ilya Sutskever, James Martens, and Geoffrey E Hinton. 2011. Generating text with
recurrent neural networks. In Proceedings of the 28th International Conference on
Machine Learning (ICML-11). 1017-1024.

[19] Manu Mathew Thomas. 2019. CMPM202_GANs.

]
]
]
[4] [n.d.]. https://github.com/sherjilozair/char-rnn-tensorflow
]
]
]
]

[o

—

https://pokemontcg.io/
https://www.youtube.com/watch?v=yz6dNf7X7SA
https://github.com/affinelayer/pix2pix-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/karpathy/char-rnn
https://github.com/jiegzhan/multi-class-text-classification-cnn
https://www.pokecard.net/
https://assets.pokemon.com//assets/cms2/pdf/trading-card-game/rulebook/sm9_rulebook_en.pdf
https://assets.pokemon.com//assets/cms2/pdf/trading-card-game/rulebook/sm9_rulebook_en.pdf
https://www.kaggle.com/kvpratama/pokemon-images-dataset
https://www.kaggle.com/kvpratama/pokemon-images-dataset
https://github.com/llSourcell/Pokemon_GAN

Gotta Generate ’em All! Pokemon (With Deep Learning) CMPS 202’19, Final Project

[20] Manu Mathew Thomas. 2019. CMPM202_SimpleImageClassifier. Information Processing. Springer, 227-239.
[21] Felipe Zilio, Marcelo Prates, and Luis Lamb. 2018. Neural Networks Models for
Analyzing Magic: the Gathering Cards. In International Conference on Neural

	Abstract
	1 Introduction
	2 Problem Statement
	3 Related work
	4 Data collection
	4.1 Dataset Extraction for card images and text assets
	4.2 Other data sets

	5 Implementation
	5.1 System Model

	6 Generation
	6.1 Image Generation
	6.2 Text Generation

	7 Classification
	7.1 Image Classification
	7.2 Text Classification

	8 Card Creation
	9 Results
	9.1 Text Generation
	9.2 Text Classification
	9.3 Image Classification
	9.4 GANs
	9.5 Pix2Pix
	9.6 Completed Cards

	10 Discussion and Limitations
	11 Future Work
	12 conclusion
	References

