Intro to Tensorflow part 2

Classifying MNIST using fully connected NN

pixel 1—Q
pixel 2—Q
pixel 3—Q
pixel 4—Q
pixel 5—Q
pixel 6—Q iu
pixel 7—Q =3
pixel 8—Q =
pixel 9—C
pixel 10— QO ==
pixel 11—0O
pixel 12— Q -
pixel 13— O Z+
pixel 14— O =~
pixel 15— O
pixel 16— O
pixel 17— O
pixel 18— O
pixel 19— 0O
pixel 20— C

x
.
.I!
o,
9,
o
v
v
.

O H OO0 OO0 O O o o

pixel 784 — O

Importing libraries and loading mnist data

import tensorflow as tf pip install tensorflow

Useful for n-dimensional array operations .
import numpy as np pip install numpy

Useful for plotting graphs/images . .
import matplotlib.pyplot as plt pip install matplotlib

Helper class for importing MNIST dataset
from tensorflow.examples.tutorials.mnist import input_data

Loads MNIST dataset with one-hot encoding
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

Setting up hyperparameters

Define number of input neurons in the network (image_size * image_size = 784 neurons)
image_size = 28

Define number of output neurons in the network (output goes from 0 - 9, 10 neurons)
num_labels = 10

No. of neurons in the first hidden layer
num_neurons_hidden_layer1 =10

Controls the rate of change of weights in neurons
learning_rate = 0.05

No. of times the network has to see the same data during training
num_iterations = 1000

For batch-wise training, each batch will have 100 images

batch_size = 100

A closer look at the data

Get random 100 images (batch_size=100) and their corresponding ground-truth from the training set
input_batch, labels batch = mnist.train.next_batch(batch_size)

print a 1D array with pixel value (foreg [0, 1,0,0,1,1,1,0,1,0,...
print(input_batch[5]

0
0 0 18 171 219 253
55 172 226 253 253 253
136 253 253 253 212 135
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

|
|
[|
|
L
|
|
L9l
3
0

Pixel values are between 0 and 1 Usually the range is 0 - 255

Data Preprocessing

MNIST dataset is already normalized

Data Normalization
pixel_value = pixel_value / 255

We can do the same operation on a numpy array of images
image_array = image_array / 255

Why we need data normalized?
1) To standardize the input by bringing it to the same scale
2) Gradient descent (our optimizer) will converge faster

A closer look at the data

Get random 100 images (batch_size=100) and their corresponding ground-truth from the training set
input_batch, labels batch = mnist.train.next_batch(batch_size)

print a 1D array with pixel value (foreg [0,1,0,0,1,1,1,0,1,0,..]
print(input_batch[5])

To plot the image we need to reshape the 1D array to 2D array of shape 28x28
plt.imshow(np.reshape(input_batch[5], [28, 28]), cmap='gray"')
print('Sample Input’)

plt.show()

print('Sample output (one hot encoding)’)
print(labels batch[5])

Build the graph

Define placeholders

placeholder to store batch training data per iteration. Shape = [None, 784]
training_data = tf.placeholder(tf.float32, [None, image_size*image_size])

placeholder to store batch labels per iteration. Shape = [None, 10]
labels = tf.placeholder(tf.float32, [None, num_labels])

Build the graph

Variables to be tuned. These are the learned parameters.

We initialize the weights with random values from a normal distribution using tf.truncated_normal()
While training, our optimizer will update the weight values for us

Weights and bias for the hidden layer. Shape = [784, 10]

W1 = tf.Variable(if.truncated_normal([image_size*image_size, num_neurons_hidden_layer1], stddev=0.1))
Shape = [10]

b1 = tf.Variable(tf.constant(0.1, shape=[num_neurons_hidden_layer1]))

Weights and bias for the output layer. Shape = [10, 10]

W2 = tf.Variable(tf.truncated_normal([num_neurons_hidden_layer1, num_labels], stddev=0.1))
Shape = [10]

b2 = tf.Variable(tf.constant(0.1, shape=[num_labels]))

Build the Neural Network

L0 wo
synapse Two functions in the neuron
WoTo

axon from a neuron

1) Linear Function: Wx + b

cellbody N (Z W b)

Wx + b is basically y = Mx + c, equation of a straight line,
where M is the slope/gradient and c is the y-intercept

Zwimi + b

output axon

activation
function

Wx+b is preferred because:
e |t's easier to work with
e Straight lines are useful to model decision boundaries

@ Decision Boundary

+
Il

Build the Neural Network

L0 wo

—9
axon from a neuron

synapse
Wox0

cell body

f (Z w;x; + b)

output axon

activation
function

Two functions in the neuron

2) Activation function: o(Wx + b)

o activates neuron based on the output of the linear function

Creates non-linearity in the network

Activation Functlons

Slgm0|d

= 1+P“

tanh
tanh(x

RelLU
max(0,x)

Leaky ReLU
max(0.1z, x)

Maxout

max(w! x + by, wd z + by)

ELU

T x>0
ale®—-1) z<0

/r\

o
hb I TTY L L]

L L L
N
L]

o0

A AL L L

OLALACACAL L) - - -

Build the Neural Network

Neural Network

#Wx+Db
hidden_layer1 = tf.matmul(training_data, W1) + b1

X100 imoges,
one per line,
Flottened

Activation function RelLU is applied
hidden_layer1 = tf.nn.relu(hidden_layer1)

#Wx +b
output_layer = tf.matmul(hidden_layer1, W2) + b2

0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0

0,1 0,2
1,1 71,2
2,1 %2,3

W
W
W
w3,1 3,2
W
W
W
w
W

=== =\

W,
W.
W.
W.
W

=

4,1 4,2
5,1 W5,2
6,1 WG,Z
W.
W,

751 7,2

£ £ 555 5 5 5 =

s == =

W. W. W.

783,90 783,1 783,2 77

0,3 o
13 o
PIERRTE
3,3 "7
4,3 °°°
5,3 "7
6,3 77
7,3 777
8,06 8,1 8,2 8,3 "7

— 10 columns —

=

= £ = =

===z

W N S
© o ©

[N
© o
.

o o
© b o
—— soul) paL

TF Layers

Weights and bias for the hidden layer. Shape = [784, 10]

W1 = tf.Variable(if.truncated_normal([image_size*image_size, num_neurons_hidden_layer1],
stddev=0.1))

Shape = [10]

b1 = tf.Variable(tf.constant(0.1, shape=[num_neurons_hidden_layer1]))

Weights and bias for the output layer. Shape =[10, 10]

W2 = tf.Variable(tf.truncated_normal([num_neurons_hidden_layer1, num_labels], stddev=0.1))
Shape =[10]

b1 = tf.Variable(tf.constant(0.1, shape=[num_labels]))

Neural Network

#Wx +b
hidden_layer1 = tf.matmul(training_data, W1) + b1

Activation function RelLU is applied
hidden_layer1 = tf.nn.relu(hidden_layer1)

#Wx +b
output_layer = tf.matmul(hidden_layer1, W2) + b2

hidden_layer1 = tf.layers.dense(training_data, num_neurons_hidden_layer1,
tf.nn.relu)

output_layer = tf.layers.dense(hidden_layer1, num_labels, activation=None)

Loss Function

Define the loss function
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits v2(labels=labels, logits=output))

Loss function usually is a distance functions. How far away is the output produced by the network from the
ground-truth?

Softmax converts the output from the network to probabilities (in this case it also acts as an activation
function)

Cross-entropy measures the distance between probability distributions (output from softmax vs one-hot
encoded ground-truth)

Softmax is only used when we want the output as a multi-class probability distribution

Other loss functions are L1 Loss, L2 Loss, GAN Loss

Optimizer

Define optimizer
Most commonly used optimizer is gradient descent
Goal of the optimizer is to find the optimal weights where the loss is minimum

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

Evaluate accuracy
correct_prediction = tf.equal(tf.argmax(output, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

Learning Rate

Learning step

Minimum

Random
initial value

Ideal Learning Rate Small Learning Rate

Plateau

. Global
Local minimum =
minimum

1
:
Start

High Learning Rate Real World Scenario

Tensorflow Session

Run the training
sess = tf.Session()
sess.run(tf.global_variables initializer())

for i in range(num_iterations):
Get the next batch
input_batch, labels_batch = mnist.train.next_batch(batch_size)

Run the optimizer, feeding the current input batch and corresponding labels
sess.run(optimizer,feed_dict={training_data: input_batch, labels: labels_batch})

if %100 == O:
train_accuracy = sess.run(accuracy, feed_dict={training_data: input_batch, labels: labels batch})
print("lteration %d, training batch accuracy %g %%"%(i, train_accuracy*100))

Evaluate on the test set
test_accuracy = sess.run(accuracy, feed_dict={training_data: mnist.test.images, labels: mnist.test.labels})
print("Test accuracy: %g %%"%(test_accuracy*100))

Converting fully connected MNIST to CNN

training_data_reshaped = tf.reshape(training_data, shape=[-1, 28, 28, 1])
hidden_layer1 = tf.layers.dense(training_data, num_neurons_hidden_layer1, tf.nn.relu)

hidden_layer1 = tf.layers.conv2d(training_data_reshaped, 32, 3, activation=tf.nn.relu)
output_layer = tf.layers.dense(hidden_layer1, num_labels, activation=None)
output_layer = tf.layers.conv2d(hidden_layer1, 32, 3, activation=tf.nn.relu)
output_layer = tf.layers.flatten(output_layer)

output_layer = tf.layers.dense(output_layer, num_labels)

CNN

Convert 1D array to a 2D array. Shape = [num_of_images, width, height, channel]

If num_of _images is unknown when building the graph put -1

Since MNIST image are grayscale, channel = 1. If we have RGB image then channel = 3
training_data_reshaped = tf.reshape(training_data, shape=[-1, 28, 28, 1])

hidden_layer1 = tf.layers.conv2d(training_data_reshaped, filters=32, kernel_size=3, activation=tf.nn.relu)

output_layer = tf.layers.conv2d(hidden_layer1, filters=32, kernel_size=3, activation=tf.nn.relu)

Convert 2D array to 1D array for the last layer
output_layer = tf.layers.flatten(output_layer)

Last layer is fully connected layer
output_layer = tf.layers.dense(output_layer, num_labels)

