
Intro to Tensorflow part 2

Classifying MNIST using fully connected NN

Importing libraries and loading mnist data

import tensorflow as tf

Useful for n-dimensional array operations
import numpy as np

Useful for plotting graphs/images
import matplotlib.pyplot as plt

Helper class for importing MNIST dataset
from tensorflow.examples.tutorials.mnist import input_data

Loads MNIST dataset with one-hot encoding
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

pip install tensorflow

pip install numpy

pip install matplotlib

Setting up hyperparameters
Define number of input neurons in the network (image_size * image_size = 784 neurons)
image_size = 28

Define number of output neurons in the network (output goes from 0 - 9, 10 neurons)
num_labels = 10

No. of neurons in the first hidden layer
num_neurons_hidden_layer1 = 10

Controls the rate of change of weights in neurons
learning_rate = 0.05

No. of times the network has to see the same data during training
num_iterations = 1000

For batch-wise training, each batch will have 100 images
batch_size = 100

A closer look at the data
Get random 100 images (batch_size=100) and their corresponding ground-truth from the training set
input_batch, labels_batch = mnist.train.next_batch(batch_size)

print a 1D array with pixel value (for eg [0, 1, 0, 0, 1, 1, 1, 0, 1, 0,...]
print(input_batch[5])

Pixel values are between 0 and 1 Usually the range is 0 - 255

Data Preprocessing
MNIST dataset is already normalized

Data Normalization
pixel_value = pixel_value / 255

We can do the same operation on a numpy array of images
image_array = image_array / 255

Why we need data normalized?
1) To standardize the input by bringing it to the same scale
2) Gradient descent (our optimizer) will converge faster

A closer look at the data
Get random 100 images (batch_size=100) and their corresponding ground-truth from the training set
input_batch, labels_batch = mnist.train.next_batch(batch_size)

print a 1D array with pixel value (for eg [0, 1, 0, 0, 1, 1, 1, 0, 1, 0,...]
print(input_batch[5])

To plot the image we need to reshape the 1D array to 2D array of shape 28x28
plt.imshow(np.reshape(input_batch[5], [28, 28]), cmap='gray')
print('Sample Input')
plt.show()

print('Sample output (one hot encoding)')
print(labels_batch[5])

Build the graph
Define placeholders

placeholder to store batch training data per iteration. Shape = [None, 784]
training_data = tf.placeholder(tf.float32, [None, image_size*image_size])

placeholder to store batch labels per iteration. Shape = [None, 10]
labels = tf.placeholder(tf.float32, [None, num_labels])

Build the graph
Variables to be tuned. These are the learned parameters.

We initialize the weights with random values from a normal distribution using tf.truncated_normal()
While training, our optimizer will update the weight values for us

Weights and bias for the hidden layer. Shape = [784, 10]
W1 = tf.Variable(tf.truncated_normal([image_size*image_size, num_neurons_hidden_layer1], stddev=0.1))
Shape = [10]
b1 = tf.Variable(tf.constant(0.1, shape=[num_neurons_hidden_layer1]))

Weights and bias for the output layer. Shape = [10, 10]
W2 = tf.Variable(tf.truncated_normal([num_neurons_hidden_layer1, num_labels], stddev=0.1))
Shape = [10]
b2 = tf.Variable(tf.constant(0.1, shape=[num_labels]))

Build the Neural Network
Two functions in the neuron

1) Linear Function: Wx + b

Wx + b is basically y = Mx + c, equation of a straight line,
where M is the slope/gradient and c is the y-intercept

Wx+b is preferred because:
● It’s easier to work with
● Straight lines are useful to model decision boundaries

Build the Neural Network
Two functions in the neuron

 2) Activation function: σ(Wx + b)

σ activates neuron based on the output of the linear function

Creates non-linearity in the network

Build the Neural Network
Neural Network

Wx + b
hidden_layer1 = tf.matmul(training_data, W1) + b1

Activation function ReLU is applied
hidden_layer1 = tf.nn.relu(hidden_layer1)

Wx + b
output_layer = tf.matmul(hidden_layer1, W2) + b2

TF Layers
Weights and bias for the hidden layer. Shape = [784, 10]
W1 = tf.Variable(tf.truncated_normal([image_size*image_size, num_neurons_hidden_layer1],
stddev=0.1))
Shape = [10]
b1 = tf.Variable(tf.constant(0.1, shape=[num_neurons_hidden_layer1]))

Weights and bias for the output layer. Shape = [10, 10]
W2 = tf.Variable(tf.truncated_normal([num_neurons_hidden_layer1, num_labels], stddev=0.1))
Shape = [10]
b1 = tf.Variable(tf.constant(0.1, shape=[num_labels]))

Neural Network

Wx + b
hidden_layer1 = tf.matmul(training_data, W1) + b1

Activation function ReLU is applied
hidden_layer1 = tf.nn.relu(hidden_layer1)

Wx + b
output_layer = tf.matmul(hidden_layer1, W2) + b2

hidden_layer1 = tf.layers.dense(training_data, num_neurons_hidden_layer1,
tf.nn.relu)

output_layer = tf.layers.dense(hidden_layer1, num_labels, activation=None)

Loss Function
Define the loss function
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=output))

Loss function usually is a distance functions. How far away is the output produced by the network from the
ground-truth?

Softmax converts the output from the network to probabilities (in this case it also acts as an activation
function)

Cross-entropy measures the distance between probability distributions (output from softmax vs one-hot
encoded ground-truth)

Softmax is only used when we want the output as a multi-class probability distribution

Other loss functions are L1 Loss, L2 Loss, GAN Loss

Optimizer
Define optimizer

Most commonly used optimizer is gradient descent

Goal of the optimizer is to find the optimal weights where the loss is minimum
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

Evaluate accuracy
correct_prediction = tf.equal(tf.argmax(output, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

Learning Rate

Ideal Learning Rate Small Learning Rate

High Learning Rate Real World Scenario

Tensorflow Session
Run the training
sess = tf.Session()
sess.run(tf.global_variables_initializer())

for i in range(num_iterations):
 # Get the next batch
 input_batch, labels_batch = mnist.train.next_batch(batch_size)

 # Run the optimizer, feeding the current input batch and corresponding labels
 sess.run(optimizer,feed_dict={training_data: input_batch, labels: labels_batch})

 if i%100 == 0:
train_accuracy = sess.run(accuracy, feed_dict={training_data: input_batch, labels: labels_batch})
print("Iteration %d, training batch accuracy %g %%"%(i, train_accuracy*100))

Evaluate on the test set
test_accuracy = sess.run(accuracy, feed_dict={training_data: mnist.test.images, labels: mnist.test.labels})
print("Test accuracy: %g %%"%(test_accuracy*100))

Converting fully connected MNIST to CNN

hidden_layer1 = tf.layers.dense(training_data, num_neurons_hidden_layer1, tf.nn.relu)

output_layer = tf.layers.dense(hidden_layer1, num_labels, activation=None)

training_data_reshaped = tf.reshape(training_data, shape=[-1, 28, 28, 1])

hidden_layer1 = tf.layers.conv2d(training_data_reshaped, 32, 3, activation=tf.nn.relu)

output_layer = tf.layers.conv2d(hidden_layer1, 32, 3, activation=tf.nn.relu)

output_layer = tf.layers.flatten(output_layer)

output_layer = tf.layers.dense(output_layer, num_labels)

CNN
Convert 1D array to a 2D array. Shape = [num_of_images, width, height, channel]
If num_of_images is unknown when building the graph put -1
Since MNIST image are grayscale, channel = 1. If we have RGB image then channel = 3

training_data_reshaped = tf.reshape(training_data, shape=[-1, 28, 28, 1])

hidden_layer1 = tf.layers.conv2d(training_data_reshaped, filters=32, kernel_size=3, activation=tf.nn.relu)

output_layer = tf.layers.conv2d(hidden_layer1, filters=32, kernel_size=3, activation=tf.nn.relu)

Convert 2D array to 1D array for the last layer
output_layer = tf.layers.flatten(output_layer)

Last layer is fully connected layer
output_layer = tf.layers.dense(output_layer, num_labels)

