Intro to CNNs



Last Week - Fully Connected Neural Network
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Convolutional Neural Network
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What is convolution?

Convolution - How a function g() changes the shape of another function f()
Applications of Convolution:

e Image processing - edge detection, blurring, instagram filters
e Audio - Simulating acoustics, electronic music
e Signal processing - high pass filter, low pass filter



Convolution in image processing

(Fg)(c) = 2 f(a)-g(b)

input

output

f() - image
g() - kernel (usually nxn matrix)

Kernel slides over the image and computes new pixel value

as a sum/avg of element-wise multiplication

Center element of the kernel is placed over the
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

New pixel value (destination pixel)




Examples of Convolution in image processing

Image kernels
http://setosa.io/ev/image-kernels/

Some other kernel examples

Unweighted 3x3 Weighted 3x3 smoothing

smoothing kernel kernel with Gaussian blur Kermal to'make

image sharper

Gaussian Blur Sharpened image



http://setosa.io/ev/image-kernels/

Padding and Striding

3x3
5x5

Normal Convolution Convolution with padding



Padding and Striding

Padding = true Padding = true
Stride = 1 Stride = 2
Input = 5x5 Input = 5x5

Output = 5x5 Output = 3x3



Deconvolution/Upsampling




Classifying MNIST using image kernels
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Classifying a face using image kernels

Very difficult to hand code all the image kernels for a face classifier



Convolutional Neural Network

Feature maps Feature maps Feature maps Feature maps Output
4@20x20 4@10x10 8@8x8 8@4x4 20@1x1

Convolution Subsampling Convolution Subsampling Convolution

Kernels/Filters are learnable parameters



Convolutional Neural Network

dense dense
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Kernels/Filters are learnable parameters



CNN with RGB input




CNN with RGB input
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CNN with RGB input




Learned Kernels/Filters
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Feature map




Activation function

Input Feature Map Rectified Feature Map

Black = negative; | |



Pooling (optional)

Pooling

Rectified Feature Map

Pooling is good for extracting the most important features
Reduces the no. of parameters(weights) in the next layer

Another alternative is stride =2 or 3



Convolutional Neural Network

dense dense
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CNN for classification

Input data Convl 4 Convs Spatial pyramid pooling FC6 FC7 FC8
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pool scale 2

27x 27 X 256 :
: @ : class number

pool scale 3

55X 55 X 96

227x 227 X 3 : " 4006 4096

Alexnet 2012

8 layers



CNN for classification
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CNN for classification

Google inception v3 2015

48 layers



CNN for classification

nn

State of the art image classifier

fnaann
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Microsoft Resnet-50/101 2015

50 -152 layers



Our simple image classifier

Conv1 Conv2 Conv3 FC1

- FC2
.’

2
64 x 64 x 3 16 kernels 16 16 32
neurons

5 Layers and not enough depth (but CPU friendly)

Dog



Our simple image classifier

Conv1 Conv2 Conv3 FC1 Iteration O

Output  Ground truth
I 0.75 0 Cat
0.25 1 Dog

64 x 64 x 3 16 kernels 16
neurons




Our simple image classifier

Conv1 Conv2 Conv3 FC1 Iteration O

Output  Ground truth
I 0.75 0 Cat
0.25 1 Dog

64 x 64 x 3 16 kernels 16
neurons min(distance(output ,gt))

Cross entropy is a distance function(kind of) for probability distributions



Our simple image classifier

Conv3 FC1 Iteration 500

Output  Ground truth
I 040 0 Cat
0.60 1 Dog

Conv1 Conv2

64 x 64 x 3 16 kernels 16
neurons min(distance(output ,gt))

Cross entropy is a distance function(kind of) for probability distributions



Our simple image classifier

Conv3 FC1 Iteration 10000

Output  Ground truth
I 0.05 0 Cat
0.95 1 Dog

Conv1 Conv2

64 x 64 x 3 16 kernels 16
neurons min(distance(output ,gt))

Cross entropy is a distance function(kind of) for probability distributions



Generative CNN - Autoencoder

Conv1 Conv2 Conv3d Conv4 Deconv1 Deconv2 Deconv3

4 .’ .‘ . .

\
! !

Encoder Decoder

Convolution + Bottleneck extracts the most significant features from the input to reconstruct the output



Generative CNN - Autoencoder

Iteration O

Conv1 Conv2 Conv3 Conv4 Deconv1 Deconv2 Deconv3 OUtpUt Ground truth

Y Y min(distance(output ,gt))

Encoder Decoder

L1 and L2 norms are used for computing pixel distance



Generative CNN - Autoencoder

Iteration 10000

Conv1 Conv2 Conv3 Conv4 Deconv1l Deconv2 Deconv3 OUtpUt Ground truth
y £
y
| | min(distance(output ,gt))
Encoder Decoder

L1 and L2 norms are used for computing pixel distance



Generative CNN - Autoencoder

Iteration O

Conv1 Conv2 Conv3 Conv4 Deconv1 Deconv2 Deconv3 OUtpUt Ground truth
Ay pu—

| |

Encoder Decoder

m—

min(distance(output ,gt))

L1 and L2 norms are used for computing pixel distance



Generative CNN - Autoencoder

Iteration 10000

Conv1 Conv2 Conv3 Conv4 Deconv1l Deconv2 Deconv3 OUtpUt Ground truth
- Ay
| | min(distance(output ,gt))
Encoder Decoder

L1 and L2 norms are used for computing pixel distance



Generative CNN - Autoencoder

Conv1 Conv2 Conv3 Conv4 Deconv1 Deconv2 Deconv3
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Ansel Adams, Yosemite Valley Bridge \ } \
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Encoder Decoder

Dataset not used in training



Generative CNN - Autoencoder

Conv4 Deconv1 Deconv2 Deconv3

Latent Variable .| .’

|

Decoder

Changing the latent variable randomly will generate new images




Generative CNN - Variational Autoencoder

Mean Vector
I Sampled
Latent
i .I Varlable .I

Standard Deviation
Vector




Generative CNN - Generative Adversarial Network

GANS



