Intro to CNNs

Last Week - Fully Connected Neural Network

pixel 1—Q
pixel 2—Q
pixel 3—Q
pixel 4—Q
pixel 5—Q
pixel 6—Q iu
pixel 7—Q =3
pixel 8—Q =
pixel 9—C
pixel 10— QO ==
pixel 11—0O
pixel 12— Q -
pixel 13— O Z+
pixel 14— O =~
pixel 15— O
pixel 16— O
pixel 17— O
pixel 18— O
pixel 19— 0O
pixel 20— C

x
.
.I!
o,
9,
o
v
v
.

O H OO0 OO0 O O o o

pixel 784 — O

Convolutional Neural Network

pbird

sunset psunsel

7.
{

i
B

)
\

NN

convolution + max pooling
nonlinearity

.l
]
]
o
o
o
(]
(]
]
<]
]

convolution + pooling layers fully connected layers Nx binary classification

What is convolution?

Convolution - How a function g() changes the shape of another function f()
Applications of Convolution:

e Image processing - edge detection, blurring, instagram filters
e Audio - Simulating acoustics, electronic music
e Signal processing - high pass filter, low pass filter

Convolution in image processing

(Fg)(c) = 2 f(a)-g(b)

input

output

f() - image
g() - kernel (usually nxn matrix)

Kernel slides over the image and computes new pixel value

as a sum/avg of element-wise multiplication

Center element of the kernel is placed over the
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

New pixel value (destination pixel)

Examples of Convolution in image processing

Image kernels
http://setosa.io/ev/image-kernels/

Some other kernel examples

Unweighted 3x3 Weighted 3x3 smoothing

smoothing kernel kernel with Gaussian blur Kermal to'make

image sharper

Gaussian Blur Sharpened image

http://setosa.io/ev/image-kernels/

Padding and Striding

3x3
5x5

Normal Convolution Convolution with padding

Padding and Striding

Padding = true Padding = true
Stride = 1 Stride = 2
Input = 5x5 Input = 5x5

Output = 5x5 Output = 3x3

Deconvolution/Upsampling

Classifying MNIST using image kernels

o B I

0 10 |0 —_— == True
% 0O |0 |0

0O |0 [1

0O 1 1|0 > True
*

1 |0 |0

O |1 |0
* 1 |0 |0 P False

0O |1 |0

Classifying a face using image kernels

Very difficult to hand code all the image kernels for a face classifier

Convolutional Neural Network

Feature maps Feature maps Feature maps Feature maps Output
4@20x20 4@10x10 8@8x8 8@4x4 20@1x1

Convolution Subsampling Convolution Subsampling Convolution

Kernels/Filters are learnable parameters

Convolutional Neural Network

dense dense

Hﬁ

1000
Max
p’\cln' 4096 409

Kernels/Filters are learnable parameters

CNN with RGB input

CNN with RGB input

Kernel Channel #1 Kernel Channel #2 Kernel Channel #3

Jl ﬁ Output
=25 HE

308 —498

CNN with RGB input

Learned Kernels/Filters

RIES
s
-~

e
I-l-l
- e .
e iR
)

EENSENESFNS
INSVNRAN NS
s WA Y] | Ty

Feature map

Activation function

Input Feature Map Rectified Feature Map

Black = negative; | |

Pooling (optional)

Pooling

Rectified Feature Map

Pooling is good for extracting the most important features
Reduces the no. of parameters(weights) in the next layer

Another alternative is stride =2 or 3

Convolutional Neural Network

dense dense

Hﬁ

1000
Max
p’\cln' 4096 409

CNN for classification

Input data Convl 4 Convs Spatial pyramid pooling FC6 FC7 FC8

=9 (=

L/ =
13x13x 384 13x 13 x 384 13X 13 X 256§

f

pool scale 2

27x 27 X 256 :
: @ : class number

pool scale 3

55X 55 X 96

227x 227 X 3 : " 4006 4096

Alexnet 2012

8 layers

CNN for classification

—————————

(v)

9601 94)
»

9601 94 £:9718

N\?Hc&

ZLS ‘AUOD £XE
ZLG ‘AUOD £XE

21LG ‘AUOD gX¢ PI:9z1§

*

/10od
T——— | ——

ZLG ‘AUO0D £Xg
I
ZLG ‘AUO0D gXg

2l ‘AUoOEXE | szoms

N\?Hc&

VGG-16 2014
16 layers

9GZ ‘AUOD gXg

9GZ ‘AUOD g£Xg
*

9GZ ‘AUOD £XE 96:2215

*

/1ood
I

82l ‘AUOD £XE
»

8¢Cl ‘AUO0D gXg ZL1:9218

*
N\?ﬂc&

9 ‘AUOD EXE
g

79 ‘AUOD gXE brzioz1s

CNN for classification

Google inception v3 2015

48 layers

CNN for classification

nn

State of the art image classifier

fnaann

\/ .,, .\

LA L L L R

A
AR AR

__, [

\
\/
\/

AR

< _ ,.,,_.,_
L R L R

\

Microsoft Resnet-50/101 2015

50 -152 layers

Our simple image classifier

Conv1 Conv2 Conv3 FC1

- FC2
.’

2
64 x 64 x 3 16 kernels 16 16 32
neurons

5 Layers and not enough depth (but CPU friendly)

Dog

Our simple image classifier

Conv1 Conv2 Conv3 FC1 Iteration O

Output Ground truth
I 0.75 0 Cat
0.25 1 Dog

64 x 64 x 3 16 kernels 16
neurons

Our simple image classifier

Conv1 Conv2 Conv3 FC1 Iteration O

Output Ground truth
I 0.75 0 Cat
0.25 1 Dog

64 x 64 x 3 16 kernels 16
neurons min(distance(output ,gt))

Cross entropy is a distance function(kind of) for probability distributions

Our simple image classifier

Conv3 FC1 Iteration 500

Output Ground truth
I 040 0 Cat
0.60 1 Dog

Conv1 Conv2

64 x 64 x 3 16 kernels 16
neurons min(distance(output ,gt))

Cross entropy is a distance function(kind of) for probability distributions

Our simple image classifier

Conv3 FC1 Iteration 10000

Output Ground truth
I 0.05 0 Cat
0.95 1 Dog

Conv1 Conv2

64 x 64 x 3 16 kernels 16
neurons min(distance(output ,gt))

Cross entropy is a distance function(kind of) for probability distributions

Generative CNN - Autoencoder

Conv1 Conv2 Conv3d Conv4 Deconv1 Deconv2 Deconv3

4 .’ .‘ . .

\
! !

Encoder Decoder

Convolution + Bottleneck extracts the most significant features from the input to reconstruct the output

Generative CNN - Autoencoder

Iteration O

Conv1 Conv2 Conv3 Conv4 Deconv1 Deconv2 Deconv3 OUtpUt Ground truth

Y Y min(distance(output ,gt))

Encoder Decoder

L1 and L2 norms are used for computing pixel distance

Generative CNN - Autoencoder

Iteration 10000

Conv1 Conv2 Conv3 Conv4 Deconv1l Deconv2 Deconv3 OUtpUt Ground truth
y £
y
| | min(distance(output ,gt))
Encoder Decoder

L1 and L2 norms are used for computing pixel distance

Generative CNN - Autoencoder

Iteration O

Conv1 Conv2 Conv3 Conv4 Deconv1 Deconv2 Deconv3 OUtpUt Ground truth
Ay pu—

| |

Encoder Decoder

m—

min(distance(output ,gt))

L1 and L2 norms are used for computing pixel distance

Generative CNN - Autoencoder

Iteration 10000

Conv1 Conv2 Conv3 Conv4 Deconv1l Deconv2 Deconv3 OUtpUt Ground truth
- Ay
| | min(distance(output ,gt))
Encoder Decoder

L1 and L2 norms are used for computing pixel distance

Generative CNN - Autoencoder

Conv1 Conv2 Conv3 Conv4 Deconv1 Deconv2 Deconv3

Al

AV Ly py—
gi=s0 W
J

Ansel Adams, Yosemite Valley Bridge \ } \

| |

Encoder Decoder

Dataset not used in training

Generative CNN - Autoencoder

Conv4 Deconv1 Deconv2 Deconv3

Latent Variable .| .’

|

Decoder

Changing the latent variable randomly will generate new images

Generative CNN - Variational Autoencoder

Mean Vector
I Sampled
Latent
i .I Varlable .I

Standard Deviation
Vector

Generative CNN - Generative Adversarial Network

GANS

