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ABSTRACT
Style transfer is a popular topic in machine learning and has numer-
ous developed applications. However, style transfer applications
are usually applying the style to the entire image. Here we purpose
a novel application that could apply different art styles on different
classes of objects and combine those objects into a new artwork.
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1 INTRODUCTION
As machine learning becomes a popular topic, there are more and
more machine learning applications been developed. Among all
machine learning applications, it could say that style transfer is
one of the most popular applications. Style transfer is using the
machine learning technique, applies a different style of artwork to
an input image, such as applying oil paint art style on photography,
making the resulting image have the texture and the tone of oil
paint, while the content is base on the input photography.

Numerous style transfer applications have different features,
and some of them can even perform real-time video style transfer.
Among those style transfer applications, what they do is applying
art style on the entire image or video, while we wonder what if we
only want to make some specific objects applying style transfer-
ring? Such as applying anime art style to the food to make it more
delicious but not applying on people, or making the background
as a fantasy world while the people stay realistic. With an exciting
idea, we develop this application to achieve the goal.

2 METHODS
In this application, we are using two machine learning techniques.
The first technique is style transfer. We provide several trained mod-
els for different style transfer, allow performing fast style transfer
for an image. The second technique is image object detection with
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segmentation, showing how many classes of objects are detected.
We integrate those two techniques into a web-based interface to
allow the user to generate their pictures with the desired art style
for each class of objects.

2.1 Style Transfer
We take an online project[1] as reference for implementing fast
style transfer. This is an implementation of an existing work[4],
the network overview is as below.

Figure 1: System overview from the referenced paper[4]

Content and style features are computed from VGG19 instead
of VGG16. Content Layer is conv4_2 and style layers are conv1_1,
conv2_1, conv3_1, conv4_1 and conv5_1. During training, content
images are rescaled to 256 * 256, and the shortest side of the style
image is rescaled to 512 to reduce the computation. Each model is
trained using 40k iteration with learning rate 1e-3, with the COCO
dataset 2014, and we trained several models with different art styles.

2.2 Object detection and segmentation
To allow transferring different styles for different classes of objects,
we need not only object detection but object segmentation program.
We take matterport/Mask_RCNN[2] as a reference to implement
object detection and segmentation. This repository is an imple-
mentation of an exisiting paper[3]. The model generates bounding
boxes and segmentation masks for each instance of an object in the
image, with its class and confidence value. The process it completes
is first performing object detection then object segmentation. Mask
R-CNN is an intuitive extension of Faster R-CNN, by using Region
Proposal Network, it proposes candidate object bounding boxes
and detects objects’ class, while also outputs a binary mask for each
Region of Interest in parallel. Below is an example result of Mask
R-CNN detecting objects and making object segmentations.

2.3 Web-base Intergration
We designed a web-based application, integrate those two tech-
niques, allowing the user to transfer different classes of objects into
different art styles, while combined in the same result image. We
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Figure 2: Results generated by models with different art styles
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Figure 3: Result of object detection[3]

first load the image from user input, then using Mask R-CNN to
perform object detection and segmentation. After we obtain the
array of the class of each detected object and the array of the binary
segmentation mask of each object, we combine the segmentation
mask with the same class.

Next, we display the detected classes and ask the user to choose
the desired transforming style for each class. Aside from the de-
tected classes, we also allow the user to choose the transforming
style for background. The art style options are below. The user
can also choose “none”, indicate no art style will be applied and
keep original. After choosing the art style for each class, we gener-
ate images using fast-style-transform for every selected style, and
we extract the image according to the corresponding mask, then
combining every extracted image.

3 RESULTS
Using the application, we generate some images for example show-
ing the results.

Some generated images show interesting combinations for putting
different styles together. Having a strong contrast art style canmake
the class of objects become highlighted. Additionally, keeping a
class of objects in the original could also highlight the class of
objects.

4 DISCUSSION
Using this application to generate images is an interesting expe-
rience. In the beginning, we have to observe the style options to
guess how to make a good combination, considering the art style,
texture, and tone of color. Every time generate an image, there is
a sense of novelty observing objects being style transformed, and
there is even a higher level of novelty observing those interesting
style transformed objects being put together. After having a better
sense of what styles can make a good combination, depending on
personal preference, the next step is considering how to choose the
proper style for each class to generate an interesting result.

Figure 4: Result of segmentation[3]

While most parts of the experience are positive, we did find some
elements that could be added.

4.1 Element of surprise!
Although it is interesting to participate in the generating process
by deciding the art style of each class of objects, we think a random
generator would be a potential feature. It could generate a surpris-
ingly interesting result, sometimes while bringing another sense of
novelty.

4.2 Better segmentation
While most of the time, object segmentation is accurate, it does fail
to make the precise segment sometimes, and it is frustrating when
the class of objects is the desiring highlighting class. Firstly, we
can improve the accuracy by using a better-trained model, having
more iteration, and using either a larger dataset for general usage
or a specific dataset for a specific usage(e.g., animal topic pictures).
Secondly, we are considering making it flexible to allow the user to
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Figure 5: Final result1

adjust the mask by providing a handy mask-editing tool similar to
some image editor feature.

4.3 Smoother style constract
While it is interesting combining and putting different styles of
objects together, some styles of objects are having a sharp contrast
on texture or tone of color, and we think it could be a useful element
to add on if there is a feather option, to make the edges of objects
less sharp by blending nearby art style.

Figure 6: Final result2

Figure 7: Final result3

4.4 Efficient pipeline design
In current pipeline, we ask user to upload another image after
finishing combination. However, we realize sometimes we are using
the same input image because we are going to find out a better
combination, and there is no need to go through the whole iteration,
such as object detection and regenerate style-transformed images.
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Figure 9: Final Result4
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