Layout Land: An Intelligent, Computer-aided Layout Decision Support System for iPhones

Montana Fowler
Jeffrey Weekley
montana_fowler@ucsc.edu
jweekley@ucsc.edu
University of California Santa Cruz
Santa Cruz, California

Figure 1: Layout Land User Interface for an auto-generated layout of iPhone screens

ABSTRACT

There are billions of possible applications (apps) for mobile devices. Curating their layout on small screens is often an afterthought. As early as the mid-1990’s designers were considering the aesthetic effects of moving from large screens to small screens [6]. The shift from large screen to small screen impacts not only design, but also user interaction. Many of the interaction models expected for good human computer interaction (HCI) are present in small screens, but HCI is not sufficient. Three key elements have emerged in addition to good HCI as important factors when considering screen...
layout: balance, unity, and sequence [2]. In this paper, we present
an AI-enabled, game-based and personalized tool called Layout
Land that serves as a user decision aid to help make better layout
choices for their mobile device. The Layout Land system takes
into consideration user preferences, heuristics and game theory to
provide examples and incentives to the user for better layout of
their most frequently used applications while maintaining balance,
unity and sequence overall.

https://github.com/montanafowler/LayoutLand

CCS CONCEPTS
• XXXX;

KEYWORDS
image segmentation, neural networks, human-computer interac-
tion, serious games

ACM Reference Format:
Montana Fowler and Jeffrey Weekley. 2020. Layout Land: An Intelligent,
Computer-aided Layout Decision Support System for iPhones. In Proce-
dings of ACM Conference (Conference'17). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Early designers considered the implications of small screen layouts
versus the more free-form layout possibilities of desktop computers,
and the general solution was to constrain the layout of mobile
devices to a grid. In this paper, we examine the layout of the current
iterations of iPhones, which are constrained to a 4 × 6 matrix of
application icons on the main screen. We do not consider secondary
screens, or the persistent row of 1 × 4 icons in the "tray" at the
bottom of the screen. Nor do we consider the ability of users to
stack icons in pop-up sub-screens, though the general principles of
balance, unity and sequence still apply in these areas.

While the constraints of the screen's 4 × 6 layout ensure that
users are not violating basic HCI principles, such as placing icons
too closely together or overlapping them, the problems introduced
by inconsiderate placement of icons within the grid persist. For
instance, a user is perfectly free to place two nearly identical ap-
application icons in proximity on the screen, where they may be
confused. Furthermore, a user may also place an icon in a position
that is difficult to reach while manipulating the phone with a single
hand. Users are generally able to configure the layout within the
given constraints without any guidance for satisfying HCI, as well
as balance, unity, and sequence.

There are millions of Google results for the query, "Organize apps
on iPhone automatically," but these results are limited to help arti-
cles on the simple mechanics of moving application icons around,
and tips for organizing. Understandably, there’s no application pro-
ing interface (API) for automatically rearranging application
icons on the screen. If there were, it would result in an arms race
for preferred positions. The user is on their own when it comes to
curating their applications and the layout of the screen.

The first-generation iPhones came with 17 pre-installed applica-
tions. Current models come pre-installed with 27 applications. The
manufacturer chooses to install its take on the four most commonly
used applications in the tray, with the remaining 23 icons occupy-
ing all but one of the initially available 24 layout positions on the
first screen. If not rearranged (or deleted), these pre-installed apps
allow for a single user-chosen app to be placed on the home screen.
All others are relegated to the second and subsequent screens. We
presume that almost all but the most passive users will rearrange
their app icons to suit their personal preferences and style. All but
a very few users are neither HCI nor design experts, and, as lay
people, adopt a casual or lazy approach to screen layout.

2 METHOD

In this project, the authors used both trained neural networks and
good-old-fashioned Artificial Intelligence (GOFAI) to analyze and
suggest an optimized screen layout for home screen captures from
user input. The system uses image segmentation based on standard
iPhone screen characteristics, a trained classifier and heuristics in
order to generate a recommended screen layout and an optimization
score for the input image.

2.1 Input Method

Users are asked to use the screen capture function of their phones
to generate an image of their home screen via a Google Documents
survey. The shared screen captures are uploaded to a shared Google
Drive, where they can be input into the web framework for Layout
Land.

The web back end enforces a data structure which includes a
directory of the user’s name, a folder for the submitted screen
capture, and a placeholder folder for the image segments that will
be used for further analysis.

For the user interface pipeline we used Flask to run a server and the
python scripts. First the images are cropped by determining
what type of phone it is and the predetermined app positions. Then
a histogram script runs on each app image to create a histogram of
their colors, followed by our classifier determining what icon class
they are. Then the front end uses simple drag and drop Javascript
to allow the user to rearrange their apps in a new layout to be scored.
(I could make a pipeline figure to include here) I can add more as I
build the gamification

Figure 2: Standard Screen Layouts for iPhone 6-8, X and Xr Max
2.2 Neural Net Training

There are approximately twelve broad categories for machine learning algorithms[1]:

- Regression
- Instance-based
- Regularization
- Decision Tree
- Bayesian
- Clustering
- Association Rule Learning
- Artificial Neural Network
- Deep Learning
- Dimensionality Reduction
- Ensemble
- Speciality Approaches (e.g. Feature Selection, Natural Language Processing, Reinforcement Learning)

It is important to choose wisely among these algorithms, as there are varying degrees of suitability for any given purpose, and even with a pre-trained model, as is the case with this project, understanding the underlying principles is important. Since neural networks fail if not properly trained, it is widely accepted practice to reuse a model (a pre-trained model), and then retraining to a given application is the only step necessary. This project relies on an image classifier based on any TensorFlow Hub module that computes image feature vectors computed by Inception V3 trained on ImageNet. For this project, the authors modified an open source project from Test.ai, called Classifier Builder [5], and its underlying pretrained model, MobileNet. MobileNet is a small, low-power module that runs very quickly for a wide variety of uses. MobileNets, in general, are optimized to run even on mobile devices (hence the name), and they compare favorably to larger image classifiers, such as Inception[3].

The model is trained using the ImageNet image library of over 10 million labeled images. For the Inception V3 model, the image sets are composed of approximately 1.3 million images, split into training and evaluation data sets, with 1.28M of the images in the training set. It is not necessary to train the model repeatedly for each application, so it should be noted that we only offer an explanation of the model’s initial training. It was only necessary to retrain this general model for the specific use-case of recognizing iPhone app icons.

2.3 Retraining

![Figure 3: Training versus Transfer Learning](image)

In this project, the authors chose to retrain a model using a subset of predefined iconography, available from the TestAI website.

2.4 Screen Capture Image Segmentation

The predictability of iOS screen dimensions and subsequent layouts allows for the segmentation of the image based on regular measurements. Different techniques, such as edge detection or feature extraction yielded results that were too irregular to be used without intervention.

A screen capture is viewed as a pixel layout. A bounding box corresponding to the dimensions of the icon is drawn. The bounding box is visually moved icon by icon, row by row so that the bounding box encompasses the icon with pixel accuracy. The tool outputs navigation information that is transcribed.

3 EVALUATION

A multi-step evaluation process ensures that classification and heuristics work together to make recommendations on optimized layouts. Some randomness ensures that users can play against the system and some variability in layout results, ensures that users can play multiple times without repetitive results. The following sections describe how the system evaluates input and provides results. The frame size for iPhone 6-8 is 180 x 180 pixels. Pixel Position is calculated from the upper left corner. Delta is calculated from the position of the first frame (+81, -216 for absolute change from 0,0 pixel), therefore horizontal movement can be calculated at +261 pixels per step and vertical movement is +306 pixels per step.

- Position A1 X=81, Y=216
- Position A2 X=342, Y=216
- Position A3 X=603, Y=216
- Position A4 X=864, Y=216
- Position B1 X=81, Y=522
- Position B2 X=342, Y=522
- Position B3 X=603, Y=522
- Position B4 X=864, Y=522

![Diamonds](image)

...and so on

3.1 Heuristics

It may be possible in the future to develop heuristics based on an analysis of users’ submitted layouts. This presumes that people arrange their icons in a generally sensible way, on the whole. But given the overwhelming number of the possible layouts, (millions of possible apps), the required sample size is impractical at this time. Therefore, the authors have chosen to use simple rules to suggest possible, optimal layouts based on a much smaller sample size.

3.1.1 Color Histogram for Finding Dominant Colors. The first heuristics-based rule is to separate icons of similar color. To do this, a simple histogram is extracted for each icon which has been segmented from the screen capture. Most icon designs have purposely been designed with a dominant color, so it is sufficient to extract the dominant color from the image in order to color sort the icons in the final, suggested layout. The icons are then arranged so that similar color icons are not co-located.

3.1.2 iOS Default Layout. Some users may not deviate from the default layout, but it is expected that a majority of them will. We can presume that many will retain the default applications. We list the default applications, as a baseline for understanding the initial state...
to place high-value icons in the lower rows. Like the "reachability" function of iOS, this will allow for access to the most frequently used applications, but without requiring the added iOS accessibility feature.

We know from the "reachability" function that the lower portion of the screen is preferred when operating the device with just one hand. For larger devices, we know that the right side of the screen (for the 90% right-handed population) is also preferred, as is anything in the tray, as those icons persist.

3.2 Classification

Using the Test.ai Inception V3 classifier, trained against the ImageNet library yielded fairly robust classifications for common icon elements, such as arrows, clouds, clocks, etc. But it did very poorly against less common design elements, such as distinctive fonts, shapes and iconography. It was necessary to collect and train against popular app icons to ensure proper classification of submitted iPhone screen captures. The following application icons were classified correctly, with the classification and confidence percentage.

- **YouTube** 0.954678
- **Instagram** 0.992927
- **TikTok** 0.907040
- **Gmail** 0.938425
- **Facebook** 0.92909
- **Google Maps** 0.979775
- **Spotify** 0.874147
- **Clock** 0.380827
- **Slack** 0.608549
- **Airbnb** 0.913247
- **Pinterest** 0.509440
- **Apple Maps** 0.883121
- **AppStore**
- **Settings**
- **Reminders**
- **Health**
- **Podcasts**
- **Notes**
- **Photos**
- **Phone**
- **Safari**
- **Messages**
- **DoorDash**
- **WhatsApp**

The following are app icons that failed to classify based on the current training.

- **AppStore**
- **Settings**
- **Reminders**
- **Health**
- **Podcasts**
- **Notes**
- **Photos**
- **Phone**
- **Safari**
- **Messages**
- **DoorDash**
- **WhatsApp**

![Figure 5: Zones are for reaching applications using one hand are green through red, based on ease-of-use](image-url)
of the layout. The applications are loaded onto the default home screen as indicated (A1...T4). Applications not initially placed on the home screen are stacked on the secondary and tertiary screens. Some applications can be deleted, so users can customize which default apps are installed and where they appear. The following is a list of hone screen, default iOS applications (with placement).

- App Store (D1)
- Books (D3)
- Calendar (A2)
- Camera (A4)
- Clock (B2)
- Health (D4)
- Home (B4)
- iTunes Store (D2)
- Mail (A1)
- Maps (B1)
- Messages (T3)
- Music (T4)
- Notes (C1)
- Phone (T1)
- Photos (A3)
- Reminders (C3)
- Safari (T2)
- Settings (E2)
- Stocks (C2)
- TV (C4)
- Wallet (E1)
- Weather (B3)

Based on the default layout, we can assume that the apps which appear on the home screen are identified by Apple as the most popular. It is difficult to assess whether these default applications are more widely used than third-party applications, but Apple is considering allowing the default applications, such as Safari and Mail, to be replaced with competing applications, which do appear in the top downloaded apps lists, as of March 2020. They include[7]:

- TikTok
- YouTube
- Instagram
- Snapchat
- Messages
- Facebook
- Netflix
- Gmail
- FaceApp
- Venmo
- Amazon
- Uber
- Bitmoji
- Netflix
- Google
- Messenger
- Chrome
- Snapchat

However, even though these icons failed to classify correctly based on the current retraining of the model, they are still subject to the heuristic evaluation, and should be placed relative to their visual characteristics in optimized locations.

3.3 Optimized Placement

Our method for determining an ideal layout of the user’s apps uses a Wave Function Collapse (WFC) algorithm. Using the classifications of apps, popularity ranking, the preferred app locations on the phone screen (reachability), and the histogram data, we create a set of rules that determines where apps should be placed and which apps should not be placed next to each other. With the similarity to WFC, we fill a map of appSpots with a list of every possible app that could be placed there. Then we prioritize choosing “popular” apps for the easy-access app locations. When we have randomly selected an app for a location, we visit its neighbors in the layout map to remove any forbidden neighbors. We also remove the chosen app from every list in the map. Then if we reach a point where the layout is unsolvable, we attempt again, with a finite number of tries. The number of tries is randomized, as each time the WFC is seeded, the optimal positions are shuffled into the worst and the neutral positions, resulting in a variable number of tries and slightly different constructions. All possible constructions, though varying slightly, will conform to the heuristic and reachability rules.

4 GAMIFICATION

Layout Land automatically classifies and makes determinations on optimized layouts for users’ home screens, but it cannot rearrange those screens for the users on their devices. The system presents the optimal layout as a matrix of the user’s application icons presented as a single image. In order to create an incentive for users to adopt the suggested layout, the system presents them with a simple tile game, where they must move a tile containing the segmented icon from their home screen into a new position. The objective is for the user to guess at a more optimal layout. The user-selected optimization is then compared to the system-selected optimal layout, and a score is returned to the user. The user can then try again to improve their score, or reveal the system’s suggested layout.

As tastes change (how many make phone calls on their devices anymore?), the list of preferred apps will change. We would expect that the classification model will need additional, targeted training, based on users’ changes in preferred apps.

3.1.3 Reachability

With the release of iPhone 6 in 2014, iPhones have moved away from smaller form factors. This has made single-hand operation more difficult. To address this issue, starting with iPhone 6, the software allows users to enable “reachability mode.” When enabled, this allows users to move the top four rows of icons to the bottom, so that they are accessible using just one hand. A1 becomes C1; B1 becomes D1, and so on. It is therefore safe to assume that locating icons in this area (without the use of the “reachability” function) is preferred for one-handed use. Our second heuristic is
5 FUTURE WORK

Given the short duration of development for Layout Land, there were limits to the amount of work that could be done. The following sections outline future work.

5.0.1 Collecting User Data for Additional Heuristics. Currently, no data on the placement of the users’ icons is collected. With a sufficient sample size, these data could be used to formulate another heuristic, presuming that people lay out their screens to accommodate their uses in a way that makes sense for them. In the aggregate, these layouts could be used to develop user profiles that could be used to tune optimization suggestions.

5.0.2 Personality Profiling. In order to fully understand the utility of Layout Land and how it relates to the usability of personal mobile devices, the authors should conduct a user study. There has been some research into personal information management (PIM) styles that describe the difficulties of developing general tools for PIM because of variances in how individuals structure and retrieve personal information. Some cues are available based on personality traits based on the study outlined in the paper, “PIM and personality: What do our personal file systems say about us?”[4] We would expect unintentional identity traits (personality) to be evidenced by how users arrange their apps. This would require that users provide personal profiles, likely through an online survey accompanying the screen submission process. Perhaps even more than how people use PIM, the choice and placement of app icons may prove to be strong indicators of personality.

6 CONCLUSION

How one chooses to place icons on a personal mobile device is both highly personal and potentially poorly curated. This project attempts to provide some guidance to users for optimizing their own layouts based on knowledge of the applications they have installed, their placement within the constrained context of the iPhone screen, common HCI factors and heuristics derived from computational methods. We believe this is a sensible framework for better curation and layout of personal mobile devices.

REFERENCES

[1] [n.d.] (n. d.).