
An Intro To
WaveFunctionCollapse

Isaac Karth* and Adam M. Smith
Design Reasoning Laboratory
Dept. of Computational Media

UC Santa Cruz

* ikarth@ucsc.edu

https://www.youtube.com/watch?v=DOQTr2Xmlz0

WFC and the Problem it Solves
Input:

- Low-resolution image or set of tiles and
allowed connectivity

- Target output size

Output:

- New image of target size where every
local pattern taken from somewhere in the
input (hard constraint)

Typical usage stories
● I downloaded the original code from github. I needed it in some language

other than C#, so I rewrote it line-for-line in my language without
understanding it. It works in my game now!

● The C# code looked scary (I didn’t really read it), but the animation was
awesome. I decided to write my own algorithm that does what I think the
original code does. It works in my game now!

WFC and the Problem it Solves
Input:

- Low-resolution image or set of tiles and
allowed connectivity

- Target output size

Output:

- New image of target size where every
local pattern taken from somewhere in the
input (hard constraint)

Graphical Texture Synthesis

http://graphics.stanford.edu/papers/liyiwei_thesis/ (2001)

3D Model Synthesis

Paul C. Merrell, Dissertation, 2009
http://graphics.stanford.edu/~pmerrell/thesis.pdf

http://graphics.stanford.edu/~pmerrell/thesis.pdf

Interesting non-image domains

Oisín poetry generator by Martin O’Leary,
a glaciologist

ProcSkater
at

ProcJam 2016

by Joseph Parker,
Ryan Jones,
and Oscar Morante

9Image Copyright: Oskar Stålberg, 2017 Images Copyright: Freehold Games

https://marian42.itch.io/wfc

Technical description of
observe and propagate cycle

Interactive demo by Oskar Stålberg
http://oskarstalberg.com/game/wave/wave.html

http://oskarstalberg.com/game/wave/wave.html

@isaackarth 11

When we visualize the architecture
pipeline the role of the classifier
becomes apparent.

12

A powerful part of the WFC overlap
model's learning is that it operates
on patterns rather than directly on
pixels.

13

Rather than specifying the possible
adjacencies by hand, WFC's overlap
model learns them from the
example image.

14

Patterns that match when placed in
partial overlap can be adjacent in
the generated solution.

15

WFC's use of a custom constraint
solver was one of the first uses of
constraint-based procedural
generation to see widespread
adoption in the wild.

It's design is streamlined compared
to solvers intended for general use
cases: the original implementation
doesn't use backtracking or
complicated heuristics.

16

Once a solution has been generated,
it needs to be translated from a grid
of patterns to a grid of tiles.

17

Pseudocode
defn Run():
 GetPatternsFromSample()
 BuildIndex()
 Loop until finished:
 Observe()
 Propagate()
 OutputObservations()

defn FindLowestEntropy(coefficient_matrix):
 Return the cell that has the lowest greater-than-zero
 entropy, defined as:
 A cell with one valid pattern has 0 entropy
 A cell with no valid patterns is a contradiction
 Else: the entropy is based on the sum of the frequency
 that the patterns appear in the source data, plus
 use some random noise to break ties and
 near-ties.

defn Propagate(coefficient_matrix):
 Loop over the cells to be updated:
 For each neighboring cell:
 For each pattern that is still potentially valid:
 Compare this location in the pattern with the cell's values
 If this point in the pattern no longer matches:
 Set the array in the wave to false for this pattern
 Flag this cell as needing to be updated in
 the next iteration

defn OutputObservations(coefficient_matrix):
 For each cell:
 Set observed value to the average of the color value
 of this cell in the pattern for the remaining
 valid patterns
 Return the observed values as an output image

def propagate(wave, adj, periodic=False, onPropagate=None):

 last_count = wave.sum()

 while True:

 supports = {}

 if periodic:

 padded = numpy.pad(wave,((0,0),(1,1),(1,1)), mode='wrap')

 else:

 padded = numpy.pad(wave,((0,0),(1,1),(1,1)), mode='constant',constant_values=True)

 for d in adj:

 dx,dy = d

 shifted = padded[:,1+dx:1+wave.shape[1]+dx,1+dy:1+wave.shape[2]+dy]

 supports[d] = (adj[d] @ shifted.reshape(shifted.shape[0], -1)).reshape(shifted.shape) > 0

 for d in adj:

 wave *= supports[d]

 if wave.sum() == last_count:

 break

 else:

 last_count = wave.sum()

 if onPropagate:

 onPropagate(wave)

 if wave.sum() == 0:

 raise Contradiction

Actual Code

Actual Code
def observe(wave, locationHeuristic, patternHeuristic):

 i,j = locationHeuristic(wave)

 pattern = patternHeuristic(wave[:,i,j])

 return pattern, i, j

def makeEntropyLocationHeuristic(preferences):

 def entropyLocationHeuristic(wave):

 unresolved_cell_mask = (numpy.count_nonzero(wave, axis=0) > 1)

 cell_weights = numpy.where(unresolved_cell_mask, preferences + numpy.count_nonzero(wave, axis=0), numpy.inf)

 row, col = numpy.unravel_index(numpy.argmin(cell_weights), cell_weights.shape)

 return [row, col]

 return entropyLocationHeuristic

def makeWeightedPatternHeuristic(weights):

 num_of_patterns = len(weights)

 def weightedPatternHeuristic(wave):

 # TODO: there's maybe a faster, more controlled way to do this sampling...

 weighted_wave = (weights * wave)

 weighted_wave /= weighted_wave.sum()

 result = numpy.random.choice(num_of_patterns, p=weighted_wave)

 return result

 return weightedPatternHeuristic

My implementations of WFC

https://github.com/ikarth/wfc_python

https://github.com/ikarth/wfc_2019f
https://github.com/ikarth/wfc_2019f/blob/master/wfc/wfc_solver.py

https://github.com/ikarth/wfc_python
https://github.com/ikarth/wfc_2019f
https://github.com/ikarth/wfc_2019f/blob/master/wfc/wfc_solver.py

Revisiting the original animations

https://camo.githubusercontent.com/dc39c61e02aa67abd0f923628cf24
1120d14f517/687474703a2f2f692e696d6775722e636f6d2f734e754256
53722e676966

https://camo.githubusercontent.com/dc39c61e02aa67abd0f923628cf241120d14f517/687474703a2f2f692e696d6775722e636f6d2f734e75425653722e676966
https://camo.githubusercontent.com/dc39c61e02aa67abd0f923628cf241120d14f517/687474703a2f2f692e696d6775722e636f6d2f734e75425653722e676966
https://camo.githubusercontent.com/dc39c61e02aa67abd0f923628cf241120d14f517/687474703a2f2f692e696d6775722e636f6d2f734e75425653722e676966

PCG Research stuff that also uses constraint solving

Tanagra using Choco solver library
(G. Smith et al. 2010) Layout solving for interior design

(Tutenel et al. 2009)

Refraction using answer set programming
(A. Smith et al. 2010)

Fast Procedural Level Population with Playability Constraints
(Horswill and Foged 2012)

Constraint Solving by analogy with Graph Coloring

● Key terms: Variables (Nodes), Values (Colors), Domains (Legal colors for a node), Constraints (Edges)
● Algorithm state: Partial assignment (Partial coloring), Current domains for unassigned variables
● Heuristics: variable selection (where to paint)

& value decision heuristics (what to paint there)

Analyzing WFC as a CSP algorithm

Variable selection heuristic: “entropy” ~ Minimum-Remaining-Values
+ random tiebreaking

Value decision heuristic: sample from distribution in input (no general CSP equiv.)

Propagation: Arc-Consistency (reduce domains considering each edge
independently until no more changes)

Backtracking: No

Restarts: Global on first conflict (when a domain becomes empty).

ASP Surrogate Implementation
Question:

- How might WFC behave if we added backtracking, constraint learning, dynamic heuristics, restart
schedules, or other ideas?

Strategy:

- Replace the entire generation phase of WFC with a call to a modern constraint solver. We used
Clingo (an answer set solver).

https://potassco.org/clingo/

https://potassco.org/clingo/

AnsProlog Formulation

Nondeterministically choose exactly one
pattern to assign for every cell.

Reject a (partial) solution if one cell is
assigned a pattern and adjacent cell (in some
direction) is not assigned one of the legal
patterns for that directional adjacency.

1 { assign(X,Y,P):pattern(P) } 1 :- cell(X,Y).

:- adj(X1,Y1,X2,Y2,DX,DY),
 assign(X1,Y1,P1),
 not 1 { assign(X2,Y2,P2):legal(DX,DY,P1,P2) }.

Experiments
Understanding Heuristics

Variable selection heuristics:

- VSIDS* [no conflicts]
- Reading-order [no conflicts]
- Random [timed out]

Implication: The “entropy” heuristic isn’t critical. So long
as you make choices near where you’ve already made
choice, you’re likely to finish generation without hitting a
conflict.

*Variable State Independent Decaying Sum

Understanding Backtracking

Let’s make the problem harder: add a global
constraint that each input pattern is used at least
once.

- Local backtracking

[solution after only a few conflicts]

- Global restart at first conflict

[repeatedly timed out]

Implication: We are going to need local backtracking to repair
solutions in the face of global constraints. It’s hard to get lucky
with only global restarts.

Variations in the wild:
Other axes don’t have to be spatial:
Can use time (also makes it easy to find animated loops!)
(https://twitter.com/MattRix/status/872674537799913472)
(https://twitter.com/MattRix/status/872884946918150145)

Local backtracking is useful
(https://twitter.com/OskSta/status/793806535898136576)

https://twitter.com/MattRix/status/872674537799913472
https://twitter.com/MattRix/status/872884946918150145
https://twitter.com/OskSta/status/793806535898136576

Often discussed but not implemented:
Global constraints, such as connectivity and
guaranteed traversal

Variations in the wild:
Propagation not required: Backtracking but no
constraint propagation (& on the PICO-8!)

WFC on the PICO-8
By Rémy “TRASEVOL_DOG” Devaux
https://twitter.com/TRASEVOL_DOG/status/876524701027315712
https://trasevol.dog/2017/06/19/week60/

https://twitter.com/TRASEVOL_DOG/status/876524701027315712
https://trasevol.dog/2017/06/19/week60/

Parallelization strategies: (Ruben Fitch)

- Try multiple generation attempts in
parallel, then keep the first that finishes.

- Parallelize propagation at the level of
columns of the image.

(orthogonal to speedups from better data
structures)

Follow-up work at UC Santa Cruz
Requiring/forbidding reachability between zones
in generated maps: (Jo Mazeika)

Takeaway Messages
● Study algorithms in the wild to inspire new applications and ideas!

○ We can use computer science literature and ideas to explain why these algorithms do what
they do

● Paying attention to data-driven generators and what they do for
accessibility

● Constraint solving is a way of using search in PCG that doesn’t
generate-and-test whole designs at a time

● WaveFunctionCollapse is constraint solving in the wild.

WaveFunctionCollapse
is Constraint Solving

in the Wild
Isaac Karth* and Adam M. Smith

Department of Computational Media
UC Santa Cruz

* ikarth@ucsc.edu

Selected References and Further Reading
Selected References

● Maxim Gumin. 2016. WaveFunctionCollapse. https://github.com/mxgmn/ GitHub repository (2016).
● Adam M. Smith and Michael Mateas. 2011. Answer Set Programming for Procedural Content Generation: A Design Space Approach.

IEEE Transactions on Computational Intelligence and AI in Games 3, 3 (Sept 2011), 187–200. https://doi.org/10.1109/TCIAIG.2011.2158545
https://games.soe.ucsc.edu/sites/default/files/tciaig-asp4pcg.pdf

Solvers

● Clingo: https://potassco.org/
● Choco: http://www.choco-solver.org/
● Minizinc: http://www.minizinc.org/

https://github.com/mxgmn/
https://doi.org/10.1109/TCIAIG.2011.2158545
https://games.soe.ucsc.edu/sites/default/files/tciaig-asp4pcg.pdf
https://potassco.org/
http://www.choco-solver.org/
http://www.minizinc.org/

Visualizing how Clingo searches*

Reading-order

→
VSIDS

←
Random

→
*Active global constraint: every pattern used at least once.

http://www.youtube.com/watch?v=QOA4LaC8qPI
http://www.youtube.com/watch?v=srYakLvHRx4
http://www.youtube.com/watch?v=4X1v6gaVoMg

Revisiting the original animations

https://camo.githubusercontent.com/dc39c61e02aa67abd0f923628cf24
1120d14f517/687474703a2f2f692e696d6775722e636f6d2f734e754256
53722e676966

https://camo.githubusercontent.com/dc39c61e02aa67abd0f923628cf241120d14f517/687474703a2f2f692e696d6775722e636f6d2f734e75425653722e676966
https://camo.githubusercontent.com/dc39c61e02aa67abd0f923628cf241120d14f517/687474703a2f2f692e696d6775722e636f6d2f734e75425653722e676966
https://camo.githubusercontent.com/dc39c61e02aa67abd0f923628cf241120d14f517/687474703a2f2f692e696d6775722e636f6d2f734e75425653722e676966

