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A Task Taxonomy for
Network Evolution Analysis
Jae-wook Ahn, Catherine Plaisant, and Ben Shneiderman

Abstract—Visualization has proven to be a useful tool for understanding network structures. However the dynamic nature of
social media networks requires powerful visualization techniques that go beyond static network diagrams. In order to provide
strong temporal network visualization tools, designers need to understand what tasks that users have to accomplish. This paper
describes a taxonomy of temporal network visualization tasks. We identify the (1) entities, (2) properties, and (3) a hierarchy
of temporal features, which were extracted by surveying 44 existing temporal network visualization systems. By building and
examining the task taxonomy, we report which tasks are well covered by existing systems and make suggestions for designing
future visualization tools. The feedback from 9 network analysts helped refine the taxonomy.

Index Terms—Network visualization, network evolution, temporal analysis, task taxonomy, design space.
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1 INTRODUCTION

NETWORK visualization is a crucial tool for un-
derstanding various network structures such as

knowledge, information, biological, or social networks
[1], [2], [3]. It can show the members of the net-
works and their relationships visually, let analysts
explore the network, uncover influential actors, find
helpful bridging people, or identify destructive spam-
mers. Due to these advantages, most off-the-shelf
network analysis software packages such as UCINET,
Pajek, and iGraph support network visualization.
Network visualization is also a core component of
popular visualization programming toolkits such as
Prefuse [4], Processing [5], and Protovis (or D3) [6]. A
Microsoft Excel extension for network visualization
called NodeXL became popular by making visual
network analysis easy and accessible [7].

Fueled by the rapid growth of social networks and
social media [8] the interest in more powerful network
visual analysis tools and methods is growing as well.
One of the most pressing challenges is facilitating
network evolution analysis. Many networks can be
better understood when analysts can examine their
dynamic nature. Societies evolve like living organ-
isms because of cultural, environmental, economic, or
political trends, external interventions, or unexpected
events [9]. In social network analysis, much work has
been done on longitudinal network models, driven by
the needs of numerous application domain problems
[1]. Most tools focus on static networks, so demand for
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flexible tools to analyze dynamic aspects of networks
is growing.

This paper proposes a task taxonomy of temporal
network visualization. By establishing a comprehen-
sive task list regarding network evolution visualiza-
tion, we hope to guide the development of future tools
and to encourage network analysts to pursue novel
research questions. Our taxonomy has three dimen-
sions: (1) network entities, (2) network properties to be
visualized, and (3) the hierarchy of temporal features.
These dimensions were extracted from 44 existing
temporal network visualization systems drawn from
prototypes published in academic papers, visualiza-
tion resources on the web, and participants from a
visualization competition.

By comparing the task taxonomy and the systems,
we can (1) identify which tasks are well covered
by existing systems; (2) describe tasks that are not
addressed as well and (3) suggest the temporal fea-
tures that should get more attention from future vi-
sualization system designers. In order to review the
completeness and usefulness of our taxonomy, we
interviewed 9 network analysis experts, then refined
the taxonomy.

The following section reviews the related work.
Sections 3 and 4 explain how the taxonomy and its
three dimensions were constructed. The task taxon-
omy is presented in Section 5 (and in more detail in
Appendix A with the list of temporal visualization
systems that were reviewed.) Section 6 presents the
evaluation results conducted with the experts. The
last section concludes the paper and discusses future
directions.

2 RELATED WORK

This paper draws from previous general and temporal
visualization taxonomies, then reviews time series vi-
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sualizations. The selected systems are presented with
the taxonomy itself in Section 5.

There have been various attempts at construct-
ing taxonomies of visualization, based on different
classification criteria. Shneiderman [10] introduced
seven data types – one-, two-, three-dimensional data,
temporal and multi-dimensional data, and tree and
network data – and seven tasks – overview, zoom,
filter, details-on-demand, relate, history, and extracts –
in order to classify information visualization systems.
Card and Mackinlay [11] attempted to understand
the differences among existing information visual-
ization designs and suggested new possibilities us-
ing the design space. Chi [12] used the Data State
Model which incorporated three dimensions: Data
Stages, Data Transformations, and Within Stage oper-
ators. Tweedie [13] classified visualization techniques
according to their externalization or interactivities.
Pfitzner and others [14] unified multiple factors such
as data, task, interactivity, skill level, and context into
a single classification framework.

In addition to these approaches that classified infor-
mation visualization techniques in general, tree and
graph task taxonomies have been proposed. Fekete
and Plaisant [15] defined general tasks for trees.
Shneiderman and Aris [16] defined a collection of
challenges as (1) Basic networks (2) Node/Link la-
bels, (3) Directed networks, and (4) Node/Link at-
tributes. They then identified eight basic tasks that
could be covered by the basic networks and incre-
mentally added more tasks according to the increase
of challenge level. Lee and Plaisant [17] presented
a list of graph visualization tasks and relevant ex-
amples based on Amar et al.’s visual analytic task
list [18]. They classified the tasks as (1) Topology-
based (adjacency, accessibility, common connection,
connectivity, attribute), (2) Attribute-based (node and
link attributes), (3) Browsing, or (4) Overview.

These visualization taxonomies help describe gen-
eral analysis tasks, but we find little to address the
complex tasks of temporal visualization analysis of
graphs. On the other hand, there have been ap-
proaches proposed in social sciences to analyze mo-
mentum, sequences, turning points, and path depen-
dencies [19]. For example, Wasserman and Faust [1]
stressed the importance of temporal social network
analysis and longitudinal network models, but not in
the visualization context.

Time series visualization in general can help ana-
lysts discover relations and patterns [20] or learn from
the past to predict, plan, and build the future [21].
Many tools have been proposed for time series anal-
ysis. For example, Hochheiser and Shneiderman [22]
introduced timeboxes to specify query constraints on
time series using direct manipulation. TimeSearcher
[23], [24] provided an interactive pattern search. Aris
et al. [20] focused on unevenly-spaced time series.
Similan [25], Lifelines [26] and Lifeflow [27] provided

methods to understand temporal categorical patterns.
To successfully apply the lessons from the time

series visualization to network evolution visualiza-
tion, one has to identify which temporal tasks an-
alysts need to accomplish. We begin by studying
which aspects have been implemented in existing
tools and organize them by a classification scheme.
To our knowledge, three studies have suggested such
classifications. Yi et al. [28] provided a temporal visu-
alization task classification for networks and a list of
measures. However, their taxonomy did not provide
a complete list of temporal tasks. Palla et al. [29]
listed six types of community events but did not
provide a rationale or evidence to justify their clas-
sification. Hadlak et al. [30] presented a classification
of visualization approaches for large dynamic graphs.
They focused on two dimensions: structure and time,
which they sub-divided into three levels – abstraction,
selection, or unreduced, so that they could create a
3 by 3 classification. However, they did not describe
individual tasks. We built on these studies to create a
more comprehensive temporal network visualization
task taxonomy and links to systems, then refined it
using the feedback from 9 analysts.

3 REVIEW OF SYSTEMS
To build our taxonomy, we collected existing temporal
network visualization systems, reviewed the temporal
analysis tasks they facilitated, and organized into a
meaningful structure. The initial systems were col-
lected from two sources. First, we surveyed a visu-
alization repository called visualcomplexity.com1 that
contained 767 visualizations (as of October 2011). It
was searched for temporal network evolution systems
by using four queries: “Time”, “Evolution”, “Tem-
poral”, “Dynamic.” Each query retrieved 207, 34, 6,
and 83 records. They were manually examined and
then 27 were selected that match the following two
conditions.

1) Network Visualization – The visualized objects
should be connected to each other in networks
explicitly or implicitly. For example, the systems
represented linked relationships among people
or concepts.

2) Temporal Visualization – They should include the
time dimension. The systems showed temporal
changes or comparison between multiple time
points.

The second source was the IEEE VAST 2008 mini-
challenge 3: Cell Phone Calls [31] .2 It is a competition
to solve network evolution questions using visual
analytic tools. Out of 23 participants, five teams were
selected who submitted correct answers that were rec-
ognized for good visual analytic results. Even though

1. http://www.visualcomplexity.com
2. http://hcil.cs.umd.edu/localphp/hcil/vast/archive/task.

php?ts id=121
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the challenge problem was identical for the five teams,
they used different network tools and methods.

With these 27+5=32 systems as seeds, 12 more were
added using a snowball sampling method [3] to locate
other temporal network visualization systems using
the social network of the authors. We either found
references of the seeds and followed them, or asked
their authors to recommend additional new ones they
knew. All 44 systems are listed in Table 2. Among
them, 17 were prototypes included in research pub-
lications, five were the VAST’08 competition partic-
ipants, and 22 were visualizations published on the
web.

We stopped when the new systems only addressed
tasks that had been identified using the already se-
lected ones. The resulting taxonomy is presented in
Sections 4 and 5.

4 DIMENSIONS OF TEMPORAL NETWORK
EVOLUTION TASKS
By surveying the temporal network evolution sys-
tems, we identified that the tasks covered by them
were described using three dimensions: Entity, Prop-
erty, and Temporal Feature. The entities are the ob-
jects analysts are interested in: node/link, group, or
network. For example, analysts can be interested in
the node (entity) degree (property) growth (temporal
feature) while observing the age (property) of each
node. Different granularities could be adopted when
selecting the entities (Section 4.2). Once the entities
of interest are identified, the entity properties can
be examined. The properties include both structural
properties and the domain attributes, and can be com-
pared over time (Section 4.3). Finally, analysts identify
the temporal features important for their temporal
analysis task, e.g. growth (Section 4.4). Note that the
entities and their properties are the main elements
of the conventional (static) network analysis. Here
analysts formulating their task need to identify the
temporal features of interest to answer their question
about the network’s evolution.

For the entire analysis task, analysts can iterate the
triple selection to work on sub-tasks repeatedly. The
iteration can be done for all the triples or only for
a part of them as in Figure 1. During the iteration,
analysts can combine independent tasks to form larger
compound tasks (Section 5.4), too.

4.1 Example: Nation of Neighbors and TempoVis
An example of network and network evolution analy-
sis illustrates the taxonomy and its dimensions. In the
past two years we have been working with the man-
ager of a social networking service called Nation of
Neighbors (NON).3 NON is a web-based community
network that enables neighbors to report local crime,

3. http://www.nationofneighbors.com

Fig. 2. TempoVis visualization for Nation of Neighbors

suspicious activity, and other community concerns.
It began in Jefferson County, WV, where it achieved
a great success as “Watch Jefferson County.” NON
has expanded across the U.S. to 137 communities
(as of February 2011), and we are helping the NON
community managers explore and analyze the social
dynamics of their social networks.

NON includes a great variety of social network
data: (1) messages posted to the NON forums, (2)
replies added to the original posts, (3) crime reports,
and (4) e-mail invitations to the NON service. Be-
cause NON is a local community-based service by the
nature, it has physically defined communities (e.g. a
town or a county).

A prototype visualization system called TempoVis
was built (Figure 2) [32] to visualize the network evo-
lution of these four entities. TempoVis has a node-link
diagram encoded with time information and timelines
showing the network-level activities. In the node-link
diagram in Figure 2 (above), the nodes and links that
are active in the current month are painted in red and
the ones that were active before the current month are
grey. The intensity of the grey degrades in proportion
to the corresponding node-link age. Analysts can use
the time slider (below the timeline graph) to navigate
through time to see snapshots of each month. The
timeline graphs in the figure (below) show how the
frequency of the node-link activities change over time.
We use this NON network example to explain the
taxonomy’s dimensions.

4.2 Entities of Analysis – Node/Link, Group, and
Network
The visual analysis of network evolution starts from
the granularity or the level of analysis selection. By
selecting a different granularity, analysts can analyze
different levels of temporal activity of networks. Yi
et al. [28] classified the tasks supporting the tempo-
ral social network visualization techniques into three
analysis levels: (1) temporal changes at the global
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Fig. 1. Iterative process of task specification

level, (2) temporal changes at the subgroup level,
and (3) temporal associations among nodal and dyad
level attributes. Sometimes analysts are interested in
observing individual player’s activities while extend-
ing their observation scopes to a group of players
or to the entire network. In NON, color encoding of
nodes (red and variable intensity of grey) supports the
node/link level task analysis, while clusters represent
active NON communities as subgroups. The timeline
might show the evolution of the entire network of
activities.

The subgroups are defined as the intermediate enti-
ties between the entire network and individual nodes,
such as triads, network motifs [33], communities [34],
or clusters. They can be sub-divided into two types:
(1) Structural Groups and (2) Domain Groups. The
former is similar to the notion of Subgroups in [1]
where the structural positions of the members deter-
mines the groupings (e.g. the group of NON members
who actively reply to each others’ posting). The latter
is closer to Social Groups where the node attribute
similarity determines the groupings (e.g. all members
who live on a particular street). The terms Structural
and Domain Groups make explicit the mechanism
by which the groups are formulated. Likewise, the
network level can be classified into two types: (1) Con-
nected Network and (2) Disconnected Components.
The connected network is comprised of actors who are
all connected to each others through some path; while
in disconnected components members from a group
are not connected to anyone in the other groups.

4.3 Structural Properties and Domain Attributes
Each entity type – node/link, group, or network –
can have a number of properties that might be com-
pared over time. We classified them as (1) Structural
Properties and (2) Domain Attributes. The Structural
Properties reflect the topological relationships among
the entities. They include the general graph theory-
based measures that are often used for social network
analysis. The latter defines information about the
network entity that is independent of the network
structure.

Lee and Plaisant [17] defined a graph visual-
ization task taxonomy and classified the tasks as
(1) Topology-based (adjacency, accessibility, com-
mon connection, connectivity, attribute), (2) Attribute-
based (node and link attributes), (3) Browsing, and
(4) Overview. Shneiderman and Aris [16] defined
a collection of challenges as (1) Basic networks (2)
Node/Link labels, (3) Directed networks, and (4)
Node/Link attributes. They then identified eight basic
tasks that can be covered by the Basic networks
and incrementally added more tasks according to the
increase of challenge level. The Structural Property in
this paper is equivalent to the Topology-based prop-
erty of Lee’s task taxonomy and the Basic network
challenges of Shneiderman and Aris’s taxonomy.

The Structural Property was defined to include the
temporal change of the properties that can show the
topological or structural characteristics, such as de-
gree, centrality, modularity, transitivity, etc. In NON,
we used betweenness-centrality of the users partic-
ipating in the online-forums (postings and replies)
to find communities and leaders as in [35]. We also
observed the node degree change in the conversation
network to study the member activities (out-degree)
and looked at the popularity of a specific member
as indicated by the number of replies s/he received
(in-degree). There are a large number of standard
Structural Properties and it is not the aim of this paper
to provide a complete list. Interested readers can refer
to social network analysis literatures [1], [2], [36].

Domain Attributes are similar to the attributes in
Lee’s task taxonomy or labels/attributes of Shneider-
man’s taxonomy. Researchers frequently need to cor-
relate the network structure (including its tempo-
ral change) with other dimensions and the Domain
Attributes can work as hypothetical independent or
dependent variables. Examples are conversation topic,
geo-location, and demographic information of actors.

In NON, the betweenness-centrality of a node is a
Structural Property of the node and can be seen as
a leadership measure [35]. Another way is to look
at a Domain Attribute such as the number of posts
of a member, and to calculate a degree of leadership
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by looking at members who have a much higher
level of activity than other members. The degree of
leadership is a Domain Attribute of the node entities
i.e. independent of the network structure, but it can
be compared with the Structural Properties of other
nodes, such as betweenness-centrality. The number of
leaders can become a Domain Attribute of the group
or network. All Structural Properties and Domain
Attributes found in the 44 systems are listed in Table 4.

4.4 Temporal Features
While the Entities of Analysis and the Structural Prop-
erties/Domain Attributes are about deciding what to
analyze, the temporal features define how we observe,
identify, or compare them over time. They are the
heart of the temporal analysis. For example, static
analysis could characterize the leadership distribu-
tion across the communities in NON, while temporal
evolution analysis would characterize the leadership
change over time. Analysts may want to find com-
munities that had stable leaders from the beginning,
emphasizing stability, and compare them to commu-
nities whose leadership emerged over time, focusing
on growth. Analysts might also want to observe the
rate of leadership change as they move from being
a reader of the posts to being a leader in a commu-
nity (convergence to the leader state) [37]. The temporal
changes such as growth, stability, rate, and convergence)
are the heart of the temporal analysis and are defined
as Temporal Features.

The temporal features were classified into two
broad groups according to the data type of the events
they relate to: (1) Individual events and (2) Aggre-
gate events. Individual events are typically categorical
events occurring at separate time points, whereas
aggregated events consist of ordered set of individual
time points with continuous values.

4.4.1 Temporal features of Individual Events

1) Single Occurrences – The atomic temporal
events, e.g. the addition or deletion of an entity
(e.g. a link) is a single event temporal feature.

2) Replacement – Replacement can be defined as a
deletion and a simultaneous addition. Other re-
placement events are the edge direction change
or conversion to bi-directional.

3) Birth and Death – This is a hybrid case as it
is a temporal feature of a single entity (e.g. a
group) and it occurs at a simple time point but it
is calculated from the temporal features of other
entities (e.g. addition of nodes and links) during
the entity’s life span.

4.4.2 Temporal Features of Aggregated Events –

Shape of Change

Aggregated events span over time periods. They can
correspond to a set of individual events (e.g. the

total number of link additions can be counted for
each month) or the continuous change of a specific
property (e.g. continuous network degree fluctuation
over time). When one plots those numbers on a graph,
a meaningful shape might appear. We identified five
shape of change features. Gregory and Shneiderman
[24] described three classes for time series analysis but
we added two more temporal features for the network
analysis.

1) Growth or Contraction – Can show whether an
entity property increases or decreases over time
(e.g. a community’s average number of posts per
member per month). It can also be aggregated
from temporal features of multiple individual
events: for example, the network growth might
be defined as the number of node/link addi-
tions per month – such as the number of new
members in a NON community. They typically
involve counts and statistics.

2) Convergence or Divergence – A property can
grow or contract during its initial stage but
gradually becomes stable. For NON we wanted
to know if the number of new members per
month became stable or not. Conversely, a stable
property can become unstable.

3) Stability – There is no or little change over time.
4) Repetition – The repetition of specific patterns

over time. It can Fluctuate or show Ritual behav-
iors.

5) Peak or Valley – Whether an entity property
increases or decreases abruptly and then returns
to its earlier value.

4.4.3 Temporal Features of Aggregated Event – Rate

of Change

While the previous temporal features were categorical
and represent the type of change, other temporal
features are needed to quantify the rate of change.
Moody et al. [38] called this relational pace and de-
fined three different aspects: levels (fast, slow), change
(accelerating, decelerating), and stability (cascades,
jumps and starts). We kept two here but moved the
stability into the previous section i.e. Shape of Change.

1) Speed – Represents the amount of change in
a given time period. For NON analysts were
looking for fast growing or slowly dying com-
munities.

2) Acceleration or Deceleration – Represents the
rate of change of speed, e.g. some communities
grow faster every month.

5 LIST OF TASKS AND DESIGN SPACE

5.1 List of Tasks
The three dimensions discussed in the previous sec-
tion (Entity, Property and Temporal Features) help
structure the long list of network evolution analysis
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tasks obtained from the 44 systems (see Appendix A).
Three tables complement the list: Table 2 shows the
44 systems, along with the application domain they
were mapped to. Table 3 shows the temporal features
used in the systems, and Table 4 shows the entity
properties they use (Structural Properties and Domain
Attributes). The system keys are provided in the
leftmost columns for cross-referencing between the
tables.

5.2 Design Space
The long list of tasks (Appendix A) is a compact
design space representation (Figure 3), which is more
practical for designers to use. Design spaces have been
used successfully in the past [39], [40], [41] in a variety
of situations. For example, in order to construct the
taxonomy of input devices (e.g. mice, keyboards, or
menus), Card and Mackinlay [39] mapped various
input devices into a two dimensional design space
using the physical property of the device (delta force,
force, movement, or position) and whether it had ei-
ther a linear or a rotary dimension. Card and Mackin-
lay could explain the individual nature of the input
devices, show relationships among multiple devices,
and could suggest what future input devices might
get built by examining the empty spots – i.e. where
no device existed yet.

The design space of the temporal network visual-
ization tasks (Figure 3) shows two dimensions: (1)
Entities by the Granularity of Analysis (X axis) and (2)
Temporal Features (Y axis). It should have included
three dimensions (as in Figure 4) but after trying
multiple possibilities, it was found be too confusing.
Therefore, the third dimension (i.e. Structural Proper-
ties versus Domain Attributes) was not shown explic-
itly in the design space. The Structural Properties and
the Domain Attributes table (Table 4) is representative
and sufficient to guide designers in selecting useful
properties or attributes.

5.3 Design Opportunities
By examining the network evolution design space and
our list of tasks we can: (1) learn what are the tasks
that are commonly addressed by existing systems;
(2) identify tasks that are not addressed yet. We can
summarize the lessons learned as follows:

Domain attributes prevail – Almost all tasks in-
corporated domain attributes (Table 4). This is rather
a natural observation because hypotheses usually in-
clude special domain attributes and network evolu-
tion as dependent and independent variables (or vice
versa).

Temporal Features less explored – By mapping
the tasks addressed by the systems and the temporal
features (Table 3 and Figure 3), we can identify the
empty spots on the table or the design space (where
the example was placed) and get clues about possible

Temporal 
Features

Entities

Properties

Individual 
Temporal 
Features

Shape of 
Changes

Rate of 
Changes

Node/Link Group Network

Structural 
Properties

Domain 
Attributes

Temporal Tasks
[Entity-Property-Feature]

Fig. 4. A design space in 3-dimensions

future additions. The most noticeable empty space is
the Rate of Changes in the Aggregated Time Event Fea-
tures column. According to our knowledge, Durant
and Truthy were the only researchers that explicitly
mentioned the rate of changes (speed) in their data
analysis. For non-network time series visualizations,
it is not a new topic (e.g. [42]) and the value of this
feature for network visualization was already noted
by [38]. However, the temporal network visualization
systems that were reviewed have not supported this
feature much.

Individual versus aggregated temporal events –
Almost all systems used the individual temporal fea-
tures as they are the most basic elements that should
be analyzed. The aggregated temporal trend features
were relatively less explored, except for the rather
simpler ones such as growth and contraction.

Multiple granularity of analysis – A lot of systems
covered more than one entity. However, they were
mostly node/link level analyses and accompanied
the network level analysis as a simple sum of the
node/link level observations. Few studies attempted
to provide analysts with means to control the granu-
larity of visual analysis that can span the node/link,
group, and the global network level.

5.4 Compound Tasks
While our design space covers a wide range of tasks,
analysts also often combine tasks into compound
tasks in order to explore more complex questions.
Almost an infinite number of compound tasks can be
defined but two dominant cases emerge:

1) Inferential Compound Tasks – Analysts can be
interested in testing hypotheses between inde-
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Examine the number of node/link or group activities (e.g. post, reply, report, invitation, page view) at a time point

Compare the number of activities and the structural metrics between time t1 and t2

Find if the activities or the structural metrics are stable

Find if the activities or the structural metrics change pattern repeat

Identify the pattern of the repetition

Find if/when the activities or the structural metrics show a peak or a valley

Identify the shape of the peaks/valleys

Identify how much changes of the activities or the structural metrics occur at a give time

Compare the speed across entities.  Which one is faster or slower?

Identify whether a change of the activities and the structural metrics is getting faster or slower

Find if and when the edge direction 
(e.g. replies) changes

Compare the convergence states 
among groups

Find if a new structure emerges from the convergence

Observe if a structure metric converges at a specific time point

Observe the growth/contraction of the activities

Compare the activity growth among the nodes/links and the groups

Observe the growth/contraction of the structure metrics

Compare the stability states among nodes/links and groups

Compare the activities and structural metrics among nodes/links and groups

Examine structural metrics (degree, density, centrality) at a time point

Find when a node/link or a group activity appears/disappears

Compare the position and the shape of the peaks/valleys between time points

Compare the position and the shape of the peaks/valleys among nodes/
links and groups

Compare the acceleration between time points

Compare the acceleration among nodes/links and groups

Compare the convergence states between time points

Compare the stability states between time points

Compare the repetition between time points

Compare the repetition among nodes/links and groups

Fig. 3. A design space view of network temporal evolution tasks
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pendent (IVs) and dependent variables (DVs).
It is not simply computing descriptive statistics
of temporal changes but finding relationships
between those changes. The difference from the
conventional inferential analysis is that either IV
or DV are temporal tasks. In our NON example,
sociologists tracked the community leadership
metric change over time (looking for growth,
contraction, or stability) and correlated those
changes to independent variables that were ei-
ther temporal (e.g. community size) or non-
temporal (e.g. region). They also correlated the
online forum conversation topics and the activ-
ity changes to see if the increase of crime-related
topics would lead to an increase of community
size over time.

2) Comparative Compound Tasks – Even when
no potential cause and effect need to be investi-
gated, analysts might be interested in comparing
the temporal changes of multiple entities. In
NON analysts visually compared the growth of
multiple communities to find the ones that grew
more vigorously.

In both cases the tasks might require derived events
to be generated and their temporal position compared
either visually or statistically. For example, in NON
analysts wanted to know if some derived events (such
as the peak of activity) preceded, followed or happen
at the same time as some other other significant
derived events (e.g. the peaks of new users joining the
community). While visual inspection was sufficient
for our small datasets, creating derived objects that
can be manipulated as additional entities in the analy-
sis would facilitate both visual and statistical analysis
of larger datasets.

5.5 Low level Data Manipulation Tasks

While others researchers have included data manipu-
lation tasks such as Retrieve Value, Filter, and Com-
pute Derived Value in their analytic tasks (e.g. Amar
et al [18]), we excluded them in the design space so
as to emphasize the temporal features of the network
itself. Still, those data manipulation tasks should be
supported for exploratory analysis. Below are three
temporal data manipulations tasks:

1) Select and/or aggregate time scale – This is
a basic task used repetitively [43]. Selecting
whether the visualization time interval should
be monthly, weekly, or daily influences many
of the decisions. Sometimes, instead of simply
selecting a specific time interval, analysts need
to aggregate low level time scales into a larger
time scale. For example, hourly data may need
to be aggregated into daily or monthly data.

2) Filter or sample – Select a small time range from
the entire dataset (e.g. the last month only) or

sample discrete time points from the continuous
data (e.g. Sundays only).

3) Align – Select a reference time point to which
the remaining time points will be aligned. Align-
ment makes the timescale become relative in-
stead of absolute [26].

6 EVALUATION WITH NETWORK ANALYSIS
EXPERTS
6.1 Procedure
To test and improve the quality of the taxonomy,
we interviewed 9 social network analysis experts
conducting research in Sociology, Social Computing,
and Social Media. The taxonomy can be used in other
domains but social network analysis is currently of
interest to many researchers, who seek to answer the
following questions:

1) Comprehensiveness – Would the experts
thought some tasks were missing in the
taxonomy?

2) Ease of Use – Is the taxonomy easy to under-
stand?

3) Precision – Does the taxonomy describe pre-
cisely the tasks?

4) Usefulness – Can the taxonomy be used by
analysts to organize and clarify their tasks?

5) Discoverability – Does the taxonomy help an-
alysts discover new tasks they had not thought
of?

The first question is most important because if a
taxonomy is not comprehensive enough, it will miss
meaningful tasks and its usefulness be lower. To test
these questions, the interviews took the following
steps:

1) Ask the participants to list their own research
questions on temporal network evolution.

2) Ask them to compare their list and the task
taxonomy (presented to them in the textual list
(Appendix A) and the design space (Figure 3)
format.

3) Ask them to find matching areas of the taxon-
omy with their own tasks and mark the degree
of matching using the 9-point Likert scale. If they
find no match, ask them to record the tasks.

4) Go back to the initial questions to review any
missing, newly discovered, or unclear questions.

5) Grade the taxonomy in terms of five subjective
assessments measures using the 9-point Likert
scale

6.2 Results
The 9 experts proposed 40 research questions and then
matched the questions with the tasks in our taxonomy.
The evaluation was conducted with an earlier version
of the taxonomy, so we report how the taxonomy
was refined in response to the problems encountered
during the evaluation.
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TABLE 1
Task distribution of experts by temporal feature

High Mid Low
Match Match Match

(7–9) (4–6) (1–3)
Individual Event Features
Single Occurrences 33 4 4
Birth/Death 42 1 6
Replacement 23 1 2
Shape of Changes
Growth/Contraction 43 10 11
Convergence/Divergence 25 8 12
Stability 37 15 5
Repetition 26 9 8
Peak/Valley 25 12 7
Rate of Changes
Speed 23 16 4
Accelerate 21 5 4
Total 298 81 63

6.2.1 Analysis of Comprehensiveness

Overall, experts were positive about the comprehen-
siveness. They could find the tasks from the taxonomy
that matched their own research questions. However,
there were two exceptions.

1) Inferential analysis between an entity and entity
properties – “I would like to analyze the rela-
tionships of the network evolution and the domain
attributes of the entities I am interested in.”

2) Comparative analysis across multiple entities –
“I would like to compare the evolution of multiple
network entities, such as the growths of community
one and community two.”

The two participants who were concerned about
these issues gave relatively lower scores (5, where 9
is the high value) (Figure 5, leftmost column). They
pointed out that the temporal analyses of network
evolution frequently needed to find out complex re-
lationships among atomic temporal tasks, such as the
inferential or comparative analysis described above.
They are not simple sequence of independent tasks.
In the initial version taxonomy, we had designed it
to best represent all the possible atomic tasks. The
compound tasks (Section 5.4) in our taxonomy was most
similar to the complex tasks the experts mentioned
but it only included sequences of atomic tasks and
could not reflect the complex nature of the tasks as
the experts. Therefore, we went back to our systems
and found two main compound tasks: Inferential
Analysis and Comparative Analysis, and added them
to Section 5.4 as can be seen in the current version.

6.2.2 Analysis of Task Distribution

After confirming the comprehensiveness of the taxon-
omy, we examined which entities and temporal fea-
tures the participants were interested in. It is like ob-
serving which areas in the design space (Section 5.2)
were picked up more frequently. A similar trend could
be observed from the systems used for constructing
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Fig. 5. Subjective feedback on the taxonomy

the taxonomy (Table 3) but this process also showed
the experts’ potential tasks.

Table 1 shows the results with the degree of match-
ing from 1 to 9 in separate columns. The top tem-
poral features in the high match range (7–9) were
Growth/Contraction, Birth/Death, Stability, and Single
Occurrences. In the mid match range (4–6), Speed,
Stability, Peak/Valley, and Growth/Contraction were fa-
vored. This result was unexpected because the top
temporal features included less frequent ones covered
by the systems in Section 5. They were Peak/Valley and
Speed. It suggests that those temporal features have
enough potential to be exploited in the future, even
though we could not find many existing examples so
far.

6.2.3 Analysis of Subjective Feedback

Figure 5 shows the subjective feedback from the par-
ticipants on five aspects of the taxonomy. As discussed
in Section 6.2.1, the majority of them (78%) agreed
on the comprehensiveness (score 7–9). The remaining
22% gave 5 out of 9 but they were all concerned about
the compound task issue, rather than suggesting new
temporal features.

Most of them (more than 75%) rated positively
(score 7–9) on the Precision, Usefulness, and Discover-
ability. They were neutral on the Ease of Use. More
than 40% still rated positively (7–9) but around 40%
of them gave mid-range scores. One participant rated
negatively. It was due to the confusion on some
temporal features. For example, Single Occurrences and
Birth and Death, which the participants had difficulty
to distinguish from each other. Therefore, the descrip-
tions of the corresponding entries were improved to
make clear the meanings and highlight the differ-
ences.

7 CONCLUSIONS AND FUTURE WORK

This paper proposes a task taxonomy for visual anal-
ysis of network evolution. We structure the definition
of the tasks using three dimensions – Network Entity,



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

Property, and Temporal Features – and identify the el-
ements of each dimension. This task taxonomy, based
on 44 existing visualization systems, identifies the
temporal features utilized so far and discovers new
aspects for future development. The task taxonomy
provides several lessons: (1) the importance of do-
main attributes, (2) temporal features less explored, (3)
higher propensity to implement the simpler individ-
ual temporal features, and (4) the potential of methods
for integrating different granularity of analysis into a
single framework.

After building the taxonomy, we tested it by in-
terviewing 9 network analysis experts. The goal of
the evaluations was to assure the comprehensiveness
of the taxonomy and its other proposed advantages
including the ability to help researchers to develop
new ideas. As a result, we gained support for the
comprehensiveness of the taxonomy and improved
the initial version by incorporating the feedback from
the evaluation participants.

We believe that the lessons learned from the task
taxonomy can help to improve future network evolu-
tion visualization systems by suggesting what missing
features need to be added. For example, we are plan-
ning to incorporate more diverse domain attributes
into the TempoVis [32] system for NON. At the
same time, it will be one of our future challenges to
efficiently combine the variety of temporal features
discovered in this study and provide well-integrated
user interfaces.

APPENDIX A
TASK TAXONOMY
A.1 Individual Temporal Event Tasks
A.1.1 Single occurrences

[s1] Examine a specific value of an entity of one or
more discrete time point(s).

[s2] Compare the value of entities of multiple time
points.

[s3] Compare the value of entities among entities.
[s4] Compare multiple time points using similarity

measures.
• Observe which and when high centrality nodes

appear (Flemming).
• Observe the change of network structure on a

specific date by overlaying the two cliques on a
single node-link diagram (GeoTemporalNet).

• Compare two sub-groups of callers (who were
assumed to have switched their cellphones) using
structural equivalence measures (GeoTemporal-
Net, SocialDynamicsVis).

• Compare multiple network diagram snapshots
extracted from different time points by examining
the change of edge weights of interest (SocialAc-
tion).

• Identify a high concentration of cellphone calls
on a specific date (SocialDynamicsVis).

A.1.2 Birth and Death

[bd1] Find if and when a specific entity appears and
disappears.

[bd2] Find an emergence of a new network structure
such as an interaction pattern, or sub-groups.

• Identify when co-authorship ties between multi-
ple nodes appear (Flemming).

• Browse and find when and how often does a spe-
cific type of forum participants appear (Durant).

• Find when a group of callers disappear (by the
call frequencies) and when another group of
callers appear (SocialDynamicsVis).

• Observe if an existing sub-group (dis)appears on
a specific date (Prajna, PieSpy).

• Observe the network structure change and find if
there is any new emerging sub-groups (SoNIA-1,
SoNIA-2).

• Observe the network structure change and find
if there appears a new communication pattern
(SoNIA-3).

• Identify the birth of the communication groups
(iQuest, TeCFlow, Arikan, Truthy).

• Identify the birth of the race groups (Morris).
• Identify the birth of virtual communities (Com-

metrix).

A.1.3 Replacement

[rp1] Find the change of entity properties.
• Discover the switch of cellphone ID’s occurred on

the same day (Prajna).
• Find the switch of edge directions according to

change of the communication pattern (SoNIA-3).
• Observe which people become obese – replace-

ment of a person’s property from normal to obese
(Obesity)

• Identify the topic switches in individual nodes or
in groups (Thiel).

A.2 Aggregated Temporal Event Tasks
A.2.1 Growth and Contraction

[gc1] Observe the value of an entity measure as it
increases or decreases.

[gc2] Compare the growth or the contraction of an
entity between time points.

[gc3] Compare the growth or the contraction pattern
among entities.

• Observe the growth of the overall network
(Durant, PieSpy, Burch, Arikan2005, Arikan2007,
Collins, Krebs).

• Observe the growth of the co-author groups (C-
Group).

• Observe the growth of the communication groups
(iQuest, TeCFlow, Arikan, Truthy).

• Observe the growth of the racial groups (Morris).
• Observe if the transitivity of the global network

grows or contracts (SoNIA-1, SoNIA-2).
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• Observe if the reciprocity of the global network
grows or contracts (SoNIA-1, SoNIA-2).

• Observe the growth and contraction of cell phone
call frequency. (SocialAction).

• Identify the growth of virtual communities (Com-
metrix).

A.2.2 Convergence and Divergence

[cd1] Observe the value of an entity measure and find
if and when it converges to a specific point.

[cd2] In case of convergence, find if a new structure
appears at the point.

[cd3] Compare the convergence states.
• Find if the transitivity converges and stabilizes

after growing to a specific time point (SoNIA-1,
SoNIA-2).

• Find the convergence point of the transitivity and
observe if the resultant network emerges (SoNIA-
1, SoNIA-2).

• Compare the result of the emerging network with
social balance theory. That is, whether the process
of making friends is achieved through already
close friends (SoNIA-1).

• Find if there is any difference between the global
network and its sub-groups in terms of the con-
vergence metric (SoNIA-2).

• Find the emergence of a specific stage in evolu-
tion simulation (Morphology).

• Find the emergence of coherent interacting struc-
tures in Cellular Automata (Wuensche).

• Find the emergence of direct human contact pat-
terns (SocioPatterns).

A.2.3 Stability

[st1] Find if a changing value of an entity stabilizes.
[st2] Identify when the stabilization happens.
[st3] Compare the stability states.

• Observe if the collaboration pattern is growing
or stabilized and compare them by international
region (TimeMatrix).

A.2.4 Repetition

[re1] Find out if a pattern of an entity value change
repeats.

[re2] Identify the repeating pattern.
[re3] Compare the repetition patterns.

• Observe the value of the network reciprocity
measure fluctuates (SoNIA-2).

• Observe the repeated communications between a
teacher and his students (SoNIA-3).

• Compare the two different communication pat-
terns of two classrooms, one of which is more
obedient and the other is not (SoNIA-3).

A.2.5 Peaks or Valleys

[pv1] Find out if there are any peaks or valleys of an
entity value change over time.

[pv2] Identify the shape of the peaks/valleys. Do they
change sharply or slowly?

[pv3] Compare the peak/valley patterns.
• Identify a sudden peak within a time range and

observe whether their duration is short or long.
Compare them with structural properties or do-
main attributes such as topic (Shamma, Lichten-
berg).

• Find any number of collaboration of the players
peaked. If any, when was it (TimeMatrix)?

A.3 Rate of Changes
A.3.1 Fast or Slow

[fs1] Identify how many changes an entity had during
a given time period.

[fs2] Compare the difference of changes of multiple
entities. Find out which one is faster or slower.

• Compare the speed of growth of nodes by differ-
ent attribute types (Durant).

• Compare the speed of infection spreadings be-
tween multiple groups (Morris).

A.3.2 Accelerating or Decelerating

[ad1] Identify whether a change is getting faster or
slower.

[ad2] Compare the acceleration or deceleration pat-
terns between entities.

ACKNOWLEDGMENTS
We appreciate the support of National Science Foun-
dation grant IIS0968521, Supporting a Nation of
Neighbors with Community Analysis Visualization
Environments, plus National Science Foundation-
Computing Research Association Computing Innova-
tion Fellow, Postdoctoral Research Grant for Jae-wook
Ahn. We also appreciate the efforts the participants
who evaluated the taxonomy and provided valuable
feedback.

REFERENCES
[1] S. Wasserman and K. Faust, Social network analysis: Methods and

applications. Cambridge university press, 1995.
[2] U. Brandes and T. Erlebach, Network analysis: methodological

foundations. Springer Verlag, 2005, vol. 3418.
[3] M. Newman, Networks: an introduction. Oxford University

Press, 2010. [Online]. Available: http://books.google.com/
books?id=q7HVtpYVfC0C

[4] J. Heer, S. K. Card, and J. A. Landay, “prefuse: a toolkit
for interactive information visualization,” in Proceedings of
the SIGCHI conference on Human factors in computing systems,
ser. CHI ’05. New York, NY, USA: ACM, 2005, pp. 421–
430. [Online]. Available: http://doi.acm.org/10.1145/1054972.
1055031

[5] C. Reas and B. Fry, “Processing: programming for the media
arts,” AI & Society, vol. 20, pp. 526–538, 2006, 10.1007/s00146-
006-0050-9. [Online]. Available: http://dx.doi.org/10.1007/
s00146-006-0050-9

[6] M. Bostock and J. Heer, “Protovis: A graphical toolkit for
visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 15, pp. 1121–1128, 2009.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

TABLE 2
Temporal network visualization systems

Keys Authors System/Study Name Application Domain
Research Publications (17)
C-Group Kang [44] C-Group citation network
Commetrix Trier [45] Commetrix Community network
Durant Durant [46] - discussion board
Fleming Fleming [47] - Patent co-authorship network
iQuest Gloor [48] iQuest communication archive (e-mail, phone records, blogs, etc)
Morris Morris [49] - Health – HIV transmission
Obesity Christakis and Fowler [50] - Health (obesity)
PieSpy Mutton [51] PieSpy IRC communication
Powell Powell [52] - affiliation network of life science institutions
Shamma Shamma [53], [54] - microblog communication
SoNIA-1 Moody [38] SoNIA social network – social balance
SoNIA-2 Moody [38] SoNIA social network – Newcombs fraternity
SoNIA-3 Moody [38] SoNIA social network – education
TeCFlow Gloor [55] TecFlow email archive
Thiel Thiel [56] - Scientific concept shift
TimeMatrix TimeMatrix [28] TimeMatrix inter-organizational collaboration network
Zhang Zhang [57] - invitation network
Competition Systems (5)
GeoTemporalNet Ye [58] GeoTemporalNet VAST08 cellphone network mini-challenge [31]
MobiVis Correa [59] MobiVis VAST08 cellphone network mini-challenge
Prajna Swing [60] Prajna VAST08 cellphone network mini-challenge
SocialAction Perer [61] SocialAction VAST08 cellphone network mini-challenge
SocialDynamicsVis Farrugia [62] SocialDynamicsVis VAST08 cellphone network mini-challenge
Online materials (22)
Arikan Arikan [63] - Twitter network
Arikan2005 Arikan [64] - Fashion network
Arikan2007 Arikan [65] Transaction Graph Transaction network
Backchannel Stamen Design [66] Backchannel Social network
Burch Burch [67] - Internet
Collins Collins [68] - Last.fm label network
Email Map Baker [69] Email Map E-mail archive
Geneffects Geneffects [70] - Genetic algorithm visualization
Hwang Hwang [71] - Subway network
Koblin Koblin [72] New York Talk Exchange Phone network
Krebs Krebs [73] - Business network
Lichtenberg Lichtenberg [74] - Biology network
Marsh Kolata [75] - Enron e-mail exchange
Morphology Chang [76] Morphology Biology network
Poetry Machine Link [77] Poetry Machine Semantic network
Poke London Poke London [78] - Digital creativity network
Posavec Posavec [79] - Knowledge (word) network
SocioPatterns Broek [80] SocioPatterns Social network
time=net.work Lamanna [81] time=net.work Transportation network
Truthy Indiana University [82] Truthy Twitter network
Twitter Lyrics Smits [83] Twitter Lyrics Twitter referring music titles
Wuensche Wuensche [84] - Biology network

[7] D. L. Hansen, B. Shneiderman, and M. A. Smith, Analyzing
Social Media Networks with NodeXL: Insights from a Connected
World. Morgan Kaufmann, 2010.

[8] d. boyd and N. B. Ellison, “Social network sites: Definition,
history, and scholarship,” Journal of Computer-Mediated Com-
munication, vol. 13, no. 1, pp. 210–230, 2008.

[9] A. Giddens, Sociology. Cambridge: Polity, 2006.
[10] B. Shneiderman, “The eyes have it: A task by data type

taxonomy for information visualizations,” Visual Languages,
IEEE Symposium on, vol. 0, pp. 336–343, 1996. [Online].
Available: http://dx.doi.org/10.1109/VL.1996.545307

[11] S. Card and J. Mackinlay, “The structure of the information
visualization design space,” Information Visualization, IEEE
Symposium on, vol. 0, p. 92, 1997.

[12] E. H. Chi, “A taxonomy of visualization techniques using the
data state reference model,” in INFOVIS ’00: Proceedings of the
IEEE Symposium on Information Vizualization 2000. Washing-
ton, DC, USA: IEEE Computer Society, 2000, p. 69.

[13] L. Tweedie, “Characterizing interactive externalizations,”
in Proceedings of the SIGCHI conference on Human factors
in computing systems, ser. CHI ’97. New York, NY,
USA: ACM, 1997, pp. 375–382. [Online]. Available: http:

//doi.acm.org/10.1145/258549.258803
[14] D. Pfitzner, V. Hobbs, and D. Powers, “A unified taxonomic

framework for information visualization,” in APVis ’03: Pro-
ceedings of the Asia-Pacific symposium on Information visualisation.
Darlinghurst, Australia, Australia: Australian Computer Soci-
ety, Inc., 2003, pp. 57–66.

[15] J.-D. Fekete and C. Plaisant, “Infovis 2003 contest – gen-
eral tasks applicable to most trees,” http://www.cs.umd.edu/
hcil/iv03contest/generaltasks.html, 2003.

[16] B. Shneiderman and A. Aris, “Network visualization by se-
mantic substrates,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 12, no. 5, pp. 733–740, 2006.

[17] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry,
“Task taxonomy for graph visualization,” in Proceedings of the
2006 AVI workshop on BEyond time and errors: novel evaluation
methods for information visualization, ser. BELIV ’06. New
York, NY, USA: ACM, 2006, pp. 1–5. [Online]. Available:
http://doi.acm.org/10.1145/1168149.1168168

[18] R. Amar, J. Eagan, and J. Stasko, “Low-level components of
analytic activity in information visualization,” in Proceedings
of the 2005 IEEE Symposium on Information Visualization.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 15–



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

21. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1106328.1106582

[19] A. Abbott, Time matters: on theory and method. University of
Chicago Press, 2001.

[20] A. Aris, B. Shneiderman, C. Plaisant, G. Shmueli, and W. Jank,
“Representing unevenly-spaced time series data for visualiza-
tion and interactive exploration,” Human-Computer Interaction-
INTERACT 2005, pp. 835–846, 2005.

[21] W. Aigner, S. Miksch, W. Müler, H. Schumann, and C. Tomin-
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TABLE 3
Temporal network visualization systems – organized by the temporal analysis features

•: node/link, ⌦:subgroup, �:network

Keys

Temporal Analysis Features
Aggregated Time Event Features

Individual Time Event Features Shape of Changes Rate of Changes
Single Birth/ Replacement Growth Convergence Stability Repetition Peak Speed AccelerateOccurrences Death Contraction Divergence Valley

Arikan ⌦ ⌦
Arikan2005 •�
Arikan2007 • • �
Backchannel • •
Burch �
C-Group ⌦ ⌦
Collins • • �
Commetrix ⌦ ⌦ ⌦
Durant • • � •
Email Map • ⌦ ⌦
Flemming • •
Geneffects •
GeoTemporalNet •⌦ •⌦
Hwang •
iQuest ⌦ ⌦
Koblin •
Krebs • �
Lichtenberg • •
Marsh •
MobiVis •⌦ ⌦
Morphology • • • �
Morris ⌦ ⌦ ⌦
Obesity •
PieSpy • ⌦ �
Poetry Machine • •
Poke London • •
Posavec • •
Powell ⌦� • �
Prajna � • •
Shamma �
SocialAction • • �
SocialDynamicVis •⌦ • ⌦
SocioPatterns • • �
SoNIA-1 • ⌦ � �
SoNIA-2 • ⌦ � �
SoNIA-3 • � � �
TecFlow ⌦ ⌦
Thiel •
time=net.work •
TimeMatrix ⌦ � � •
Truthy •⌦ ⌦
Twitter Lyrics • •
Wuensche �
Zhang •⌦
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TABLE 4
Temporal network visualization systems – organized by the structural properties and the domain attributes

•: node/link, ⌦:subgroup, �:network
Keys Entity Properties

Structural Properties Domain Attributes
Arikan •⌦ Centrality, Group membership
Arikan2005 •� Density, Network size
Arikan2007 •� Edge connectedness, Network size
Backchannel • Edge connectedness
Burch � Network size � Internet size growth
C-Group • Edge direction of the focal-pairs, Group membership ⌦ Author group
Collins • Degree, edge connectedness • Music label
Commetric •⌦ Edge connectedness, Group membership
Durant • Edge direction • Node type: provider, consumer, facilitator
Email Map ⌦ Group membership
Flemming • Patent organization and importance
Geneffects • Edge connectedness • Genetic algorithm tree
GeoTemporalNet •⌦� Degree, Edge direction/weight, Network layout • Call frequency, Geo-location, Cellphone ID
Hwang • Edge weight • Subway Traffic
iQuest ⌦ Betweenness-centrality ⌦ Betweenness-centrality
Koblin • Number of talks in a telephone network
Krebs � Network size • Role in business network
Lichtenberg • Degree • Protein interaction
Marsh • E-mail address
MobiVis •⌦� Degree, Edge direction/weight, Network layout • Call frequency, Geo-location, Cellphone ID
Morphology � Evolution simulation
Morris ⌦ Group membership • Sexual partnership, HIV infection
Obesity • Edge connectedness between obese and non-obese people • Obesity
PieSpy • Centrality
Poetry Machine • Edge connectedness • Emergence of meaning
Posavec • Edge connectedness
Powell ⌦� Cohesion, Homophily
Prajna •⌦� Degree, Edge direction/weight, Network layout • Call frequency, Geo-location, Cellphone ID
Shamma • Centrality • Topic
Poke London • Edge connectedness • Institutional relationships
Social Action •⌦� Degree, Edge direction/weight, Network layout • Call frequency, Geo-location, Cellphone ID
SocialDynamicVis •⌦� Degree, Edge direction/weight, Network layout • Call frequency, Geo-location, Cellphone ID
SocioPatterns • Edge connectedness � Human contact pattern
SoNIA •� Edge direction/weight, Transitivity, Reciprocity � Class type: obedient, rebellious
TecFlow ⌦ Betweenness centrality, Core/periphery structure ⌦ Innovation networks
Thiel • Group membership • Scientific concepts
time=net.work • Betweenness-centrality
TimeMatrix • Density, Centrality ⌦� Inter-organizational collaboration
Truthy •⌦ Edge connectedness, Group membership
Twitter Lyrics • Edge connectedness • Album – twitter relationships
Wuensche � Coherent interaction structure in cellular network
Zhang • Degree, Hub • Organizational position, Acceptance rate


