
DOI: 10.1111/cgf.12872 COMPUTER GRAPHICS forum
Volume 36 (2017), number 6 pp. 201–225

Visualizing Group Structures in Graphs: A Survey

Corinna Vehlow, Fabian Beck and Daniel Weiskopf

VISUS, University of Stuttgart, Germany
{corinna.vehlow, fabian.beck, daniel.weiskopf}@visus.uni-stuttgart.de

Abstract
Graph visualizations encode relationships between objects. Abstracting the objects into group structures provides an overview
of the data. Groups can be disjoint or overlapping, and might be organized hierarchically. However, the underlying graph still
needs to be represented for analyzing the data in more depth. This work surveys research in visualizing group structures as part
of graph diagrams. A particular focus is the explicit visual encoding of groups, rather than only using graph layout to indicate
groups implicitly. We introduce a taxonomy of visualization techniques structuring the field into four main categories: visual
node attributes vary properties of the node representation to encode the grouping, juxtaposed approaches use two separate
visualizations, superimposed techniques work with two aligned visual layers, and embedded visualizations tightly integrate
group and graph representation. The derived taxonomies for group structure and visualization types are also applied to group
visualizations of edges. We survey group-only, group–node, group–edge and group–network tasks that are described in the
literature as use cases of group visualizations. We discuss results from evaluations of existing visualization techniques as well
as main areas of application. Finally, we report future challenges based on interviews we conducted with leading researchers of
the field.
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ACM CCS: Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces (GUI)

1. Introduction

Graphs or networks are used to model relationships between ob-
jects of any kind. When analyzing graphs exceeding a certain size,
however, we do not want to or cannot study each object and each
relationship connecting two objects individually. We use visualiza-
tion to give us a meaningful overview of the graph structure, to
highlight central objects, to show similar objects and to reveal out-
liers. The ability of a visualization to provide these features largely
depends on its efficiency to abstract from individual objects into
groups or clusters of objects. For instance, applying a random ar-
rangement of visual representatives of objects does not show any
of these groups and largely affects the readability of the visualiza-
tion, for node-link representations [Pur02] as well as for adjacency
matrix diagrams [MML07]. In addition to such groups of objects,
also the relations among objects are often classified into different
types; these types need to be visualized as well to fully understand
the depicted graph information.

Indicating groups in the graph by placing similar objects close
to each other implicitly shows some group structures. However, it

reduces the potentially multi-dimensional concept of object simi-
larity to a two-dimensional (node-link) or one-dimensional (matrix)
layout problem: while similarity implies closeness, closeness does
not necessarily imply similarity; or in other words, close objects are
perceived as similar although their close placement might only be an
artifact of the layout algorithm, edge bundling technique, or dimen-
sionality reduction. Moreover, groups could not just be interpreted
as disjoint sets of objects, but might be structured hierarchically,
might overlap, or might be fuzzy. Implicit encodings of group struc-
tures lack the ability to unambiguously define group structures and
to encode more complex concepts of groups.

A growing number of visualization approaches have been de-
veloped to overcome these limitations of implicit group encodings.
These indicate explicitly which group structures are contained in the
graph. These group structures can be either automatically identified
by clustering or categorization algorithms, or imported from an ex-
ternal source of information. The means to visualize the structures
explicitly are versatile (Figure 1): for instance, the group member-
ships can be encoded in visual node attributes (Figure 1a), they
can be shown in a separate view that is dynamically linked to the
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(a) Visual node attributes
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(d) Embedded

Figure 1: Illustrating examples of the four main categories of visualization techniques to explicitly encode different types of group structures
within graph visualizations. (a) Visual node attributes—here color. (b) Juxtaposed—here using an attached approach. (c) Superimposed—here
using a contour approach. (d) Embedded—here using a hybrid approach.

Figure 2: Number of publications and distribution of paper types from 1991 to 2015 in our literature collection.

graph view (Figure 1b), the group encoding can be overlaid onto the
graph structure (Figure 1c), or both graph and group structure can
be merged into an embedded representation (Figure 1d). Describing
the large design space of explicit visual encodings of group struc-
tures in graphs and classifying existing visualization technique are
the main scope of this survey paper.

The literature we collected reveals that already 110 visualization
techniques showing vertex (97) or edge (19) group structures in
graphs were published, most of them in the past decade (Figure 2,
green bars). These are accompanied by various papers on graph
layout algorithms that highlight group structures, evaluation papers
that study the visualization techniques and application papers that
use variants of the techniques in practice (Figure 2, yellow, purple
and pink bars).

Although the body of literature is constantly growing, the design
space for explicitly encoding group structures in graphs has not yet
been surveyed in detail. Existing reports of state of the art focus
on other aspects of graph visualization or subproblems: Herman
et al. [HMM00] describe several approaches that use the hierar-
chical group structure for navigation and abstraction with a focus
on the application to graphs. The survey by Brockenauer and Cor-
nelsen [BC01] contains mainly graph layout algorithms to visualize
flat or hierarchical disjoint groups in graphs. Von Landesberger
et al. [vLKS*11] survey the area of graph and tree visualization
in general but only occasionally describe techniques to represent
groups in graphs visually. Saket et al. [SSK14] introduce a taxon-
omy of tasks for group-level graph visualization for disjoint groups.
General techniques to visualize sets and group structures are re-
viewed by Alsallakh et al. [AMA*14], however, without discussing
the integration of these techniques into graph visualizations. Beck
et al. [BBDW16] survey visualization techniques of graphs that
change over time, where in some of them the group structure of

the graph is considered. Furthermore, there exist several surveys of
general layout algorithms for node-link diagrams [BETT98, DPS02,
GFV13]. Elmqvist and Fekete [EF10] provide an overview of how
to use a hierarchical group structure of objects for navigation and
aggregation in information visualization techniques, such as scatter
plots, parallel coordinates, and node-link diagrams.

In this paper, we review the state of the art in visualizing vertex
and edge group structures in graphs. It extends our previous publica-
tion [VBW15], which focused on vertex group structures only and
did not discuss task types. We first introduce the area by discussing
the background of the visualized data and, in particular, formulate
a consistent terminology (Section 2). We define the scope of the
survey and describe the applied methodology to collect and analyze
the literature (Section 3). As a basis for the techniques that explic-
itly visualize graphs and groups, we give an overview of implicit
layout methods (Section 4). Our main contribution is the classifi-
cation of explicit visualization techniques of vertex groups into a
two-layered taxonomy that we derived from the collected literature
of vertex groups. In contrast our previous publication [VBW15], we
apply a similar scheme to further classify and discuss techniques for
edge groups (Section 6). As a second addition, we collected tasks
that are described in the literature, abstracted them, and classified
them with respect to the group structure and task type they refer to
(Section 7). We discuss evaluations and applications of the presented
techniques (Sections 8 and 9). Based on interviews we conducted
with experts of the field, we identify major research challenges for
vertex groups that could guide future research (Section 10).

The collected, tagged bibliography is available online1 in an inter-
active literature browser. Throughout the paper, we use small icons

1http://go.visus.uni-stuttgart.de/groups-in-graphs
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Table 1: Taxonomy of vertex group structures including the respective num-
bers of technique papers in our literature collection.

Overlap

Group structure taxonomy Disjoint Overlapping

Structure Flat 25 23
Hierarchical 48 1

as visual cues within the text summarizing and augmenting terms,
figures and references. For good comparability, all main figures il-
lustrating the discussed visualization techniques show the same data
set (i.e. the same graph and the same groups for each type of group
structure).

2. Vertex Group Structures in Graphs

Group structures occur in different applications of graphs structuring
the graph vertices in the form of sets, categories or hierarchies. In
the following, we define vertex group structures in graphs including
a taxonomy for the types of vertex group structures. We further
discuss origins that the groups can arise from.

2.1. Definitions

We first introduce a static graph G = (V,E), which consists of a set
of vertices V and a set of edges E ⊆ V × V . Vertex groups within
graphs, in general, can be defined as a family of sets of vertices
S = {S1, . . . , SK}, where each Sk ⊆ V and K denotes the number
of groups. Groups can be differentiated in several ways (Table 1):
they can be disjoint or overlapping, unstructured (flat) or structured
(usually, hierarchically).

Overlap: In disjoint group structures , for all pairs (Sk1 , Sk2 ),
with k1 �= k2: Sk1 ∩ Sk2 = ∅. Overlapping group structures , in
contrast, contain at least two sets Sk1 and Sk2 with Sk1 ∩ Sk2 �= ∅.
Overlapping groups can be further differentiated into crisp and
fuzzy . In crisp overlapping groups, each vertex vi fully belongs to
one or more sets Sk . This belonging can be described, in alternative
to the set notation, by a |V | × K matrix F , where each matrix
coefficient fik ∈ {0, 1} describes if vi belongs to the k-th set Sk

(fik = 1) or not (fik = 0). In contrast, in fuzzy overlapping groups,
vertices vi may belong to different sets Sk to different extent. Here,
fik ∈ [0, 1] describes to what fraction the vertex vi belongs to set
Sk .

Structure: The groups within the graph might be unstructured,
referred to as flat group structures , or structured. While arbitrarily
complex group structures are possible, we only focus on hierarchi-
cal group structures because other forms are only rarely used in
visualizations showing group structure in graphs. We define a hier-
archical group structure as a family of sets H = {H0, H1, . . . , HL},
where each Hl ∈ H is a set of other group elements from H or
graph vertices vi ∈ V . These groups represent the inner elements of
a hierarchy where H0 forms the root element. Hence, for all Hl ∈ H
where l = 1, . . . , L (i.e. all groups but the root element), there exists

exactly one parent group Hl′ ∈ H (l′ ∈ {0, . . . , L}) with Hl ∈ Hl′ ;
since also each graph vertex is contained in exactly one group, the
same applies to all vi ∈ V (∀vi ∈ V ∃! l′ ∈ {0, . . . , L} : vi ∈ Hl′ ).

To build a taxonomy of group structures, we consider overlap
and structure as orthogonal concepts. Hence, as listed in Table 1,
both can be combined into four categories: disjoint flat ,
overlapping flat , disjoint hierarchical , and overlapping
hierarchical . For the flat approaches , the group structure
is modeled by the family of sets S, whereas the hierarchical taxon-
omy categories require a hierarchical group structure H. In case
of disjoint hierarchical groups , the hierarchical structure H
replaces S because the group elements of the hierarchy also pro-
vide an overlap-free grouping on every level of the hierarchy. For
overlapping hierarchical groups , in contrast, both S and H
are required to encode both the overlap of groups and the hierarchy.
The numbers in Table 1 show that all categories, except for overlap-
ping hierarchical groups , are covered by various visualization
techniques, as further discussed below in Section 5.

Graphs can be extended in different directions, for instance, to
encode directed or weighted edges, to allow multiple edges between
a pair of vertices (multi-graph), or to embed additional multivariate
attributes for vertices and edges. Graphs may also change over time
regarding their topology and attributes. For a dynamic graph , the
group structure can be defined globally over all points in time, i.e.
as a static group structure. Alternatively, a group structure can be
derived for each point in time, i.e. the groups are dynamic as well.In
the following, techniques that represent a dynamic graph are addi-
tionally marked with ; only when the group structure changes over
time together with its underlying graph, the technique is marked
with . Since there is a multitude of possible extensions like dy-
namic graphs that are often orthogonal to the encoding of group
structures, we do not explicitly reflect them in our definitions. Had-
lak et al. [HSS15] formalize these as multi-faceted graphs and give
a general overview of visualization techniques.

2.2. Origin of group structures

Graph and group structures only need to be visualized together when
there is a relationship between them, which is either known be-
forehand or should be retrieved through the visual analysis. Group
structures can be based on the graph topology or additional ver-
tex attributes. Without further attributes required, topology-based
group structures are commonly extracted using graph clustering
methods [For10]. Such methods try to detect groups of vertices, the
so-called community structure or clustering, with a high density of
edges within the groups but low density of edges between groups.
These methods usually result in disjoint flat or hierarchical group
structures / , and for some specialized algorithms, crisp or
fuzzy overlapping groups / .

When there are other attributes available to describe the graph
vertices in a specific application, these can be used as well to de-
rive a group structure. A categorical attribute directly translates into
disjoint flat groups ; but also overlapping and hierarchical
structures might already be encoded explicitly in a set of at-
tributes. If multiple attributes—in particular, numeric ones—should
be aggregated, vertices can be grouped based on these multivariate

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



204 C. Vehlow et al. / Visualizing Group Structures in Graphs

attributes using standard feature-based clustering and classification
algorithms [XW05].

3. Scope and Methodology

To derive a taxonomy of group structure visualizations, we first
defined the scope of the survey, collected relevant publications, and
tagged all of them with respect to certain categories to structure
them. This section describes the methodology we applied and gives
an overview of the collected literature data set.

3.1. Scope

The scope of our survey is the visualization of group structures
within graphs following the definitions in Section 2.1. Compared
to the previous version of our survey [VBW15], in this survey we
consider not only groups of vertices but groups of edges as well.
Edge groups will be formally introduced in Section 6. We thereby
consider only techniques that support the visualization of both the
group structure and the graph topology. Techniques that visualize
only the groups but not the graph, or vice versa, only the graph
were considered out of scope. We further differentiate between im-
plicit and explicit visualization of group structures. There are many
layout techniques for node-link representations and vertex sorting
algorithms for matrices that can be used to implicitly encode the
group structure in the node positions. Such implicit encoding tech-
niques are briefly summarized in Section 4 for vertex groups and
Section 6 for edge groups but are not part of our taxonomy un-
less the implicit encoding was combined with an explicit encoding.
Our taxonomy, therefore, comprises only publications that use an
explicit encoding of the group structure.

3.2. Data collection and analysis

To collect relevant publications for this survey, we first started with
a selection of publications that we knew from previous research and
manually inspected the title of all publications of various informa-
tion visualization journals and proceedings:

� Journals

- Computer Graphics Forum
- IEEE Transactions on Visualization and Computer

Graphics
- Information Visualization
- Journal of Graph Algorithms and Applications

� Conferences

- IEEE Pacific Visualization Symposium (PacificVis) [2001–
2004: InVis.au; 2005–2007: APVIS]

- IEEE Symposium on Information Visualization (InfoVis)
[since 2006 a special issue of IEEE Transactions on Visu-
alization and Computer Graphics]

- International Conference on Information Visualization (IV)
- Joint Eurographics–IEEE VGTC Symposium on Visualiza-

tion (EuroVis) [1999–2004: VisSym; since 2008 a special
issue of Computer Graphics Forum]

- Symposium on Graph Drawing (GD)

We also looked at the publications cited by relevant papers and
work that cited these relevant publications. This way, we could
extend our database step by step to retrieve a comprehensive list
of publications relevant to our scope, not just limited to the above
journals and conferences.

This literature was structured using tagging as a main instrument,
starting with a list of freely assigned reasonable tags that are itera-
tively merged, extended, and grouped to categories while working
through the literature. For further details, we refer to the survey by
Beck et al. [BBDW16], whose tagging process we followed.

3.3. Literature data set

To analyze the data, we tagged all publications on vertex groups
with respect to several categories starting with the paper type. First,
we differentiate papers that use only implicit encoding (tag: lay-
out_technique; 51 papers) from papers that use explicit encoding.
For the latter, we distinguish application (41), evaluation (7), and
technique (97) papers. Moreover, each of the publications is as-
signed at least one tag for each of the following categories: graph
visualization, group overlap, group structure, graph type, evalua-
tion and application. Table 2 gives an overview of these tags and
the number of technique (#T), evaluation (#E) and application (#A)
papers for each tag. In addition, it also acts as a legend for icons
used throughout the paper. The main tags for our visualization tax-
onomy are the tags for the category group visualization and further
tags to define the subcategories (not part of Table 2). Each explicit
visualization paper is assigned to exactly one of the four main group
visualizations. Only papers that present or evaluate more than one
technique are assigned more than one group visualization tag if the
presented techniques are of different type.

4. Implicit Encodings of Vertex Groups

The most common visual representations of graphs are node-link
diagrams (i.e. visual nodes connected by graphical links repre-
sent vertices and edges) and adjacency matrices (i.e. rows and
columns represent vertices; cells are marked if the two respective
vertices are connected by an edge). For both techniques, the vi-
sual representatives of vertices need to be positioned on the canvas,
i.e. laid out or ordered. By placing related or similar vertices next
to each other, group structures can be already indicated implicitly.
Please note that our taxonomy and the scope of the paper does not
cover these implicit encodings based on vertex positioning. We only
give a brief overview of implicit approaches in this section because
they are often combined with explicit encodings of groups and part
of some of the discussed visualization techniques. We differentiate
between one-dimensional and multi-dimensional layout strategies.

4.1. One-dimensional layout

One-dimensional layouts are mainly used for adjacency matrix
representations to position vertices along one axis. Groups of
vertices that are well connected appear as visual block struc-
tures, given that the vertices are ordered appropriately at the ma-
trix axes [Lii10, MML07]. Often, a hierarchical group structure
is used to arrange the vertices [EDG*08]; even when using the

c© 2016 The Authors
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Table 2: Categories and contained tags with descriptions as well as the number of technique, evaluation and application papers using an explicit visualization
of vertex group structures. All icons used in this survey are added to the respective tags, except for the icon representing coloring approaches , not listed in
the table.

#T #E #A
tag (category) 97 7 41 description

graph visualization graph visualization paradigm
node-link 86 7 39 node-link representation of the graph
matrix 10 1 1 matrix representation of the graph
generic 4 1 being applicable to all graph representations
group overlap overlap of group
disjoint 73 6 28 no overlap
crisp overlapping 23 1 15 vertices may belong to different groups
fuzzy overlapping 1 vertices may belong to different groups with different extent

group structure structure type of group
flat 48 5 26 unstructured
hierarchical 49 2 15 groups are hierarchically structured

group visualization visual representation of groups
visual node attribute 11 3 7 properties of node representation vary
juxtaposed 30 1 3 groups and graph visualized separately
superimposed 35 6 23 use of two aligned visual layers
embedded 22 1 integrate group and graph representation

graph graph properties
bipartite 2 1 bipartite or semi-bipartite graph
directed 21 1 5 relations are directed
dynamic 17 6 graph changes over time
dynamic_groups 7 group structures changes over time
generic 45 5 20 none of the other graph attributes applies
multi 1 2 multi-graph
multivariate 16 2 8 graph with multivariate attributes
weighted 11 1 2 edges are weighted

evaluation type of evaluation
algorithmic 8 3 algorithmically using metrics
case study 52 18 application within application domain
comparison 4 1 1 comparison with other visualization technique
user feedback 7 1 1 collection of user feedback
user study 12 7 2 conducting a study involving users

application application domain
biology 16 20 visualizing biological data
computer 6 1 1 visualizing computer networks
document 5 3 visualizing documents and text
economy 9 2 visualizing business/financial/transport data
media 3 1 visualizing media data
social network 36 12 visualizing social networks (e.g. co-author)
software engineering 22 3 5 visualizing software artifact
sports 3 visualizing sports-related data

hierarchical structure, we can still create different sortings by
switching the order of children of a hierarchy element. Some ap-
proaches let users interactively build a subjectively satisfying order
of rows and columns [Ber11, PDF14] while others solve the sorting
problem algorithmically [HF06, MML07]. But also for node-link
diagrams , one-dimensional layouts are used, for instance, arrang-
ing the nodes on a circle [Hol06] or linear axes [BVB*11].

4.2. Multi-dimensional layout

In contrast, multi-dimensional layouts are only applicable to node-
link diagrams because only node-link diagrams allow the free

positioning of nodes in a two- or three-dimensional space. Force-
directed layout algorithms, such as the Fruchterman–Reingold
method [FR91] or the Kamada–Kawai method [KK89], can re-
veal groups because connected nodes are positioned close to each
other. Force-based approaches have been extended in various ways
to further enforce the implicit grouping of nodes for disjoint flat
groups [BC01, DKM06, DM14b, Noa07]. In general graph
layout algorithms, a generic approach to consider disjoint or overlap-
ping groups / is to use pseudo (dummy) vertices that represent
sets of vertices and are connected to all contained vertices [EFN99,
EH00, GF11]. For disjoint groups , another method is based on
a divide-and-conquer strategy [ACJM03, AMA07b, EF97, FT04]:

c© 2016 The Authors
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first, a meta-layout is derived for an aggregated graph with collapsed
groups; then, the vertices of each group are laid out independently.
For overlapping groups , some approaches apply a sequence of
different layout algorithms to first generate a rough layout that is re-
fined in later steps by other algorithms [BALJ06, BCL*07, LDB11,
VRW13].

5. Taxonomy of Vertex Group Structure Visualizations

There are various visualization techniques that explicitly encode the
vertex group structure within the graph visualization. Some of the
explicit encodings are based on layouts already implicitly show-
ing group structures. In total, we collected 97 explicit visualization
technique papers, which we categorized according to a hierarchical
taxonomy that consists of two layers (Table 3). In the first layer, the
four main categories of our taxonomy (illustrated in Figure 1) are
visual node attributes, juxtaposed visualization, superimposed visu-
alization and embedded visualization. They are largely disjoint; only
some superimposed and embedded visualization approaches use vi-
sual node attributes as additional explicit encoding. The second layer
further subdivides the categories according to main distinguishing
visual features. This section describes all categorized techniques
following the hierarchical taxonomy and illustrates them using con-
ceptual sketches.

All techniques were additionally tagged with respect to the type
of group structure (see taxonomy of group structures in Section 2.1)
that they visualize. The references are therefore marked with the
respective icons: flat or hierarchical , disjoint or over-
lapping . With respect to the type of overlap, by default crisp
overlap can be assumed if not indicated otherwise; therefore,
only the few fuzzy overlapping groups are marked. Table 3 con-
trasts both taxonomies by listing all technique papers classified into
the respective combination of categories. Few techniques combine
two explicit visualization approaches or can be used for different
types of group structures; each of these occurs in several cells of the
table. Techniques are thereby marked with 1st (2nd) if the approach
represents the primary (secondary) visualization approach of this
technique. In particular, color is often used as secondary explicit
visual mapping of the group structure. As mentioned before, tech-
niques (10) visualizing a dynamic graph with a static group structure
will be marked with the symbol . Exclusively those techniques that
visualize dynamic groups in dynamic graphs (7) will be marked with
the symbol . Finally, depending on the underlying graph visual-
ization, each technique is classified as node-link representation ,
matrix representation or hybrid .

5.1. Visual node attributes

The association of a vertex with one or more groups can be encoded
visually by changing the node representation. Although we can eas-
ily distinguish no more than about 7 colors [Hea96], color is widely
used to convey group information. Each group Sk ∈ S is assigned a
color and the nodes of the graph (Figure 1 a) or group representatives
(e.g. Figures 5a, b.1 and b.2) are colored, respectively. In total, 40
techniques use visual node attributes, i.e. Color (39) and/or glyphs
(7), as primary or secondary explicit encoding of the group mem-
berships; all of them are based on node-link diagrams to represent
the graph . Most of these approaches combine the group encoding
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Figure 3: Visualization of overlapping vertex groups using
glyphs and color . (a) Pie-charts encode the fuzzy membership
degrees . (b) Icons within the node representatives encode crisp
overlapping group memberships .

with one of the other explicit visualization approaches—juxtaposed,
superimposed or embedded visualization. Since these other encod-
ings usually dominate the visual appearance, we discuss them in
later subsections in detail but indicate the additional encoding via
visual attributes by an icon .

We identified 11 techniques that use only color to visu-
alize group membership explicitly [Dek01, DS13, DYL*15,
DYLL15, IMMS09, LWC*14, NIST12, SGKS15, SKL*14,
TLTC05, vHW08]. Nodes that belong to only one group are sim-
ply colored with respect to that group [DS13, DYL*15, DYLL15,
SGKS15, SKL*14, vHW08] (Figure 1a). For flat overlap-
ping groups , nodes are represented using glyphs—‘graphical
objects designed to convey multiple data values’ [War04]. One ap-
proach is to represent vertices as pie charts [IMMS09, LWC*14,
NIST12, ST08] with sections colored with respect to the groups
the vertex belongs to [IMMS09, LWC*14]. For crisp overlapping
groups , the sections of the pie charts have equal size [LWC*14,
ST08]. In contrast, for fuzzy overlapping groups , they can have
different size to encode the fuzzy membership degrees fik [VRW13]
(Figure 3a). Paduano and Forbes [PF15] indicate crisp group over-
laps by adding a colored border to a node for each group it
belongs to. Another approach for crisp overlapping groups is to
represent vertices using boxes that contain icons (Figure 3b), such
as cross or check marks, in the particular color for all groups they
belong to [TLTC05]. Xu et al. [XDC*13] use glyphs to encode the
group overlap as well as other metrics by combining different visual
channels including intensity of color, hue, size and shape.

Some techniques optimize the color assignment to maximize ei-
ther the color differences between neighbouring groups [GHK10,
HGK10, LQB12] or the color stability between similar
groups [HKV14] . Sansen et al. [SLAB15] assign
similar colors to nested groups. Vehlow et al. [VBAW15]
developed a technique for dynamic graphs with dynamic groups.
Here, each dynamic group—rather than each individual group—is
assigned a color to highlight the evolution of groups, where the op-
timization approach assigns similar hues to similar dynamic groups.

5.2. Juxtaposed visualization

In juxtaposed visualization approaches, the graph G and the group
structure S are visualized next to each other (Figure 4). We
distinguish between separate juxtaposition, where both visualization

c© 2016 The Authors
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Table 3: Visualization techniques classified by our taxonomy of group visualizations and vertex group structures. References are marked with 1st (2nd) if the
visualization approach is used as primary (secondary) visual mapping for the type of group structure. Illustrating images are included only for primary visual
mappings.

c© 2016 The Authors
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(c) Attached—linear (d) Attached—radial

Figure 4: Juxtaposed visualization of disjoint hierarchical vertex groups . (a) Brushing and linking and (b) visual links are used to
highlight associated elements of a subhierarchy. In (c)–(d), the hierarchical group structure visualization is aligned with the graph visualization
to connect leaves of the hierarchy to the respective nodes of the graph.

layouts are independent from each other, and attached juxtaposition,
where the layouts are aligned, e.g. using the same vertex order. We
found 30 technique papers for that category (as primary approach),
of which all but 5 visualize disjoint hierarchically structured groups
( ; compare to Table 3).

5.2.1. Separate

In separate juxtaposed visualizations, the group structure S or H
is visualized independently of the graph in different views. Al-
though drawn separately, the juxtaposed visualizations are usually
linked by interactions (Figure 4a) or visual indicators (Figure 4b).
In total, we identified 9 separate juxtaposed visualizations—all but
one [SJUS08] for disjoint group structures ; 5 for flat and 4 for
hierarchical group structures. All identified separate juxtaposed
visualizations show the graph as node-link diagram .

Disjoint flat group structures can be visualized using node-
link diagrams [vdEvW14] . Nodes represent groups defined inter-
actively based on multivariate attributes; the number of aggregated
edges between groups is mapped to the width of the link connecting
the group nodes. The techniques by Sallaberry et al. [SMM13]
and Meidiana and Hong [MH15] visualize the evolution of
groups using a time-line approach and the graph of a selected time
step separate from the group visualization.

Not only the graph but also disjoint hierarchical group struc-
tures are visualized using tree visualization methods such
as axis-parallel [AvHK06] (Figure 4b) or radial [CC07] node-link
diagrams, layered icicle plots [CLLT15], or a treemap [AKY05]
(Figure 4a). Abello et al. [AKY05, AvHK06] and Cao
et al. [CLLT15] link the group structure view with the graph view
via brushing and linking. By selecting a subtree in the hierarchical
structure Hl , the user can navigate through the graph as only the re-
spective subgraph will be visualized. ASK-GraphView [AvHK06]
additionally supports an overview of the complete graph using a ma-
trix representation in a third view. VisLink [CC07] arranges two
planes showing the group structure and the graph in 3D space. Visual
links connect internal nodes of the hierarchy, i.e. group nodes Hl ,
with all its vertices vi ∈ Hl , respectively. Again, the highlighting—
here using visual links—is done only on demand via selection, and
hence, only for a selected subtree of the hierarchy (Figure 4b).

Schulz et al. [SJUS08] also make use of visual links between
the groups and the graph vertices. They visualize semi-bipartite
graphs, i.e. bipartite graphs with possible edges within the bipartite
sets of vertices. In their visualization of semi-bipartite graphs, both
vertices and groups are arranged separately on two vertical axes and
linked visually by straight links, where arcs are used to visualize re-
lations between the vertices. The sorting of either one of the two axes
can be adapted to reduce edge crossings. Zhou et al. [ZXQ15]
show the graph and the group structure using separate linked views.
Within the radial group structure view, vertices are represented by
arcs. Groups are encoded by circles inside the ring region.

5.2.2. Attached

In contrast to separate juxtaposed group visualizations, attached
juxtaposed visualizations align the group structure visualization
with the graph visualization. In total, we identified 21 attached
juxtaposed visualizations (as primary approach), all for disjoint hi-
erarchical group structures . For the alignment, these ap-
proaches use the same linear order and place vertices along one
axis [AZ13, BPD11, BBV*12, BD13, BVB*11, BHW11, BMW15,
BSW13, GF03, GBD09, NSC05, PvW06, PvW08, vH03, vHSD09]
(Figures 1b and 4c) or a circle [BD08, BFBD10, GZ11, Hol06,
HCvW07, VBSW13] (Figure 4d).

One approach to visualizing disjoint hierarchical group structures
is to use a layered icicle plot that is attached to a matrix represent-
ing the graph [AZ13, BD13, BSW13, GF03, vH03, vHSD09]
(Figure 1b). The leaves within the icicle plot have to be aligned with
the rows and columns of the matrix, i.e. the hierarchical structure
is used to generate a linear ordering of the vertices represented in
rows and columns. Most of these techniques support an abstraction
of the graph based on the hierarchical structure by collapsing and
expanding groups to aggregate rows and columns [AZ13, GF03,
vH03, vHSD09].

Instead of using a matrix as graph representation, the disjoint
hierarchical group structure can also be aligned with a node-link
representation of the graph (Figure 4c). To be aligned with the
hierarchy, the nodes need to be arranged linearly; arcs are usu-
ally used instead of straight links to avoid overplotting of nodes
and links. The ArcTrees approach [NSC05] combines the linear
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node-link diagram with a one-dimensional treemap: the arcs are at-
tached to the leaves of the tree visualization (first of Figure 4c).
The disjoint hierarchical structure can also be visualized by a
node-link diagram [GBD09] (third of Figure 4c) or other tree vi-
sualizations with a linear leaf order [PvW06, PvW08] (second of
Figure 4c). TimeArcTrees [GBD09] extends these approaches to dy-
namic graphs . For each time step, the vertices are aligned vertically
and directed links are drawn as arcs right (direction is downward)
and left (direction is upward) of the vertices. An aligned tree node-
link diagram attached at the left visualizes the hierarchy. Increasing
the scalability of the graph representation, other approaches place
the vertices of the graph on two parallel vertical axes and, instead
of arcs, straight links between the two axes visually encode di-
rected graph edges [BBV*12, BPD11, BVB*11]. This technique
can be used not only for dynamic graphs [BBV*12, BVB*11] but
graph comparison as well [BPD11]. To overcome the problem of
visual clutter for dense graphs, edge bundling [BPD11] or edge
splatting [BVB*11, BBV*12] (i.e. plotting edge density fields) is
applied. Another approach that uses straight links instead of arcs
stacksthe links horizontally either above or below the hierarchical
group structure visualization to indicate their direction [BMW15]
(fourth of Figure 4c, here the layout is rotated by 90 degrees). A
timeline attached to the left of each stacked link shows the evolution
of the edge weight over time.

The group structure can also be aligned with the graph visualiza-
tion radially, for instance, by positioning the vertices along a circle
circumference and by surrounding the graph visualization with a
radial layered icicle plot [GZ11, Hol06, HCvW07] (Figure 4d), by
drawing the hierarchical structure as an indented hierarchy in the
center of a radial graph representation [BHW11] , or by drawing
the hierarchical structure on top of the graph visualization [BD08] .
The edges of the graph are visualized using arcs [GZ11] or bundled
edges [Hol06, HCvW07] (Holten [Hol06] presents three explicit
visualization techniques and, therefore, is referenced in three sub-
sections, respectively). Ghou and Zhang [GZ11] furthermore allow
an abstraction of the graph by collapsing inner nodes of the tree.
For representing dynamic graphs , the graph within the circle
needs to be replaced by a sequence of graphs G := (G1, . . . , GT ),
for instance, arranged in colored pieces of circle rings in TimeR-
adarTrees [BD08]. Using TimeSpiderTrees [BFBD10], relations are
visually indicated by the orientation of shortened links instead of
connectedness. In contrast, within the radial layered matrix visual-
ization [VBSW13], edges are represented as color-coded markers
in a polar coordinate system.

5.3. Superimposed visualization

Another method to show the graph and its group structure together is
to overlay their representations (Figures 5 and 6). In this case, the vi-
sualizations of the two layers cannot be rendered independently but
have to be fully aligned to create a meaningful superimposition. We
identified 35 technique papers that superimpose the group structure
onto the graph visualization, where 21 of them use color coding
as an additional explicit visual mapping (see also Section 5.1 and
Table 3). All of the superimposition techniques are based on two-
or three-dimensional node-link diagrams to visualize the graph.

We differentiate three main categories of overlays: line overlays (3),
contour overlays (25) and partitioning approaches (8).

5.3.1. Line overlay

When using lines as an overlay, for each group Sk ∈ S, a line
of a particular color connects all nodes of that group without
interruption [AHRRC11, XDC*13] (Figure 5a). The
LineSets approach [AHRRC11] draws a smoothly curved line for
each group, where the shortest path is computed by an adopted
Lin–Kernighan’s traveling salesman heuristic. In contrast, in the
approach by Xu et al. [XDC*13], for each group Sk , all nodes
vi ∈ Sk are connected using a spanning-tree-like shape, which is
a generalization of the LineSets approach. While LineSets can be
applied to any graph layout, the other approach [XDC*13] uses
multidimensional scaling (MDS) to arrange similar items close
to each other, i.e. it combines line overlays with an implicit en-
coding of groups. Within the extended LineSets by Paduano and
Forbes [PF15] , a line connecting the members of a group
replaces the directed links rather than being drawn as curve on top.

5.3.2. Contour overlay

Groups can also be visualized within node-link diagrams using
closed contours (we identified 25 technique papers): all nodes vi

within the contour are interpreted as belonging to the enclosed
group Sk ∈ S or Hl ∈ H (Figure 5b). Such contours share the
characteristics of set diagrams such as Euler diagrams. Contour
shapes are versatile, for instance, rectangles [DGC*05, DHRMM13,
HRD10, YDG*15] (Figures 5b.2 and 5b.3), circle sections [ET07]
or circles [Hol06, KG06, NIS15] (Figure 5b.1), convex hulls
[BPF14, ST08, WWY*15], arbitrary two-dimensional curves or
splines [BBT06, BD05, BT06, BT09b, DEKB*14, DvKSW12,
EHKP14, GHK10, HGK10, HKV14, LQB12, VPF*14] (Figure 1c),
or three-dimensional bubbles [BD07, SBG00]. The GMap approach
[GHK10, HGK10, HKV14] creates a map of contours that are ad-
jacent to each other using a Voronoi tessellation. In contrast, the
contours within MapSets [EHKP14] are generated based on non-
crossing spanning trees of points belonging to the same cluster.
The trees can be grown to contiguous non-overlapping regions that
are optimized with respect to their convexity. Other approaches
use such spanning trees as well but draw the filled contours using
texture splatting; a splat is defined as radial function for which
the transparency increases with the radius. The eXamine tech-
nique [DEKB*14] uses an extended self-organizing map neuron
grid approach to lay out nodes and links but also to draw the con-
tours. The contours within KelpDiagrams [DvKSW12] are gener-
ated using a routing algorithm that links elements of the same group
by constructing minimum cost paths over a tangent visibility graph
(i.e. a graph including edges that are tangent to the area of linked
nodes). Vihrovs et al. [VPF*14] create contours using a potential
field function. Wu et al. [WWY*15] generate them based on the
Voronoi treemap using shrinking and smoothing of the Voronoi
cells. All nodes connected to a different group are drawn in the gaps
between the contours.

Contours may be used alone [DGC*05, ST08], in combination
with texture [BT09b] (i.e. each group Sk is assigned a different tex-
ture and the contour is filled, respectively), or in combination with
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Figure 5: Superimposed visualization of the vertex group structure using (a) line or (b) contour overlays, often in combination with . For
overlapping groups, the contours either overlap or, as in (b.2), nodes are duplicated and connected by visual links. In contrast, for hierarchical
group structures, the contours are nested (b.3).
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Figure 6: Superimposed visualization using partitioning of screen
space into (a) vertically aligned or (b) nested regions.

color coding (all other approaches). When used in combination
with color coding, the contour itself can be colored with respect
to the group it surrounds [DEKB*14] (e.g. Figure 1c) or the con-
tour is filled with that color [BBT06, BD05, BD07, BPF14, BT06,
DvKSW12, EHKP14, ET07, GHK10, HGK10, HKV14, HRD10,
KG06, LQB12, SBG00, VPF*14, WWY*15] (e.g. Figures 5b.1
and 5b.2).

Contours are so far used to visualize disjoint flat , over-
lapping flat and disjoint hierarchical group structures
(Table 3). For disjoint flat group structures [BPF14, EHKP14,
ET07, GHK10, HGK10, HKV14, NIS15, WWY*15], also the con-
tours are disjoint, while the contours representing overlapping group
structures [BT06, BBT06, BT09b, DvKSW12, DEKB*14,
HRD10, LQB12, ST08, VPF*14] intersect. To untangle overlapping
contours, Henry Riche and Dwyer [HRD10] introduced two tech-
niques for rectangular contour overlays: a splitting approach (groups
with intersections are split up, drawn as non-overlapping rectangular
shapes, and linked by lines) and a duplication approach (Figure 5b.2)
(groups are represented by overlaid rectangles and nodes contained
in several groups are duplicated and linked visually). For disjoint
hierarchical group structures , the contours or surfaces are
nested to encode the hierarchical structure visually [BD05, BD07,
DGC*05, DHRMM13, Hol06, KG06, SBG00, YDG*15] (e.g.
Figure 5b.3). The circle contour approach by Holten [Hol06] visu-
alizes edges between groups by links that are bundled based on the

hierarchical structure (we consider edge bundling an implicit edge
grouping technique as discussed in Section 6). ArcTrees [NSC05],
although classified as juxtaposed attached visualization, could be
considered a contour approach because it uses a contour overlay, in
particular, rectangles nested in one dimension.

5.3.3. Partitioning

Similar to contour overlays, partitioning indicates group member-
ship by visual enclosing. In contrast to the contour approaches, par-
titioning is space-filling: the screen space is divided into areas that
represent the groups. We identified 8 partitioning approaches, all of
them are based on node-link diagrams to represent the graph. For
disjoint flat groups , the area of the node-link diagram is parti-
tioned vertically or horizontally into the respective number of areas
K—one for each group Sk ∈ S [SA06, SKB*14, ZCCB13]; nodes
are laid out within the area they belong to (Figure 6). Each area is
either surrounded by a rectangular contour [SKB*14, ZCCB13] or
colored with respect to the group it presents [SA06] . If groups
overlap, the same approach can be used, but nodes that belong to
different groups are duplicated [LSKS10] (Figure 6a). Beyond
what is shown in the figure, the approach by Lex et al. [LSKS10]
arranges a two-dimensional area for each group in 3D, like walls
of a room, and adds visual links between shared nodes to visu-
alize the overlap. For disjoint hierarchical structures , the
screen is partitioned in a space-filling way using a circular ici-
cle plot [AFH*10] or a treemap approach [DWS*14, FWD*03,
Hol06] (see Figure 6b), where each subsection representingHl ∈ H
is surrounded by a contour.

5.4. Embedded visualization

The fourth main category of our taxonomy is the embedded visu-
alization of group structures (Figure 7). At a first glance, this cate-
gory looks similar to the superimposition approach using contours
(Section 5.3.2). But in contrast to overlays, groups are modeled as
nodes themselves and are integrated into the graph. In total, we
identified 22 technique papers, where 18 approaches are based on
node-link representations alone (Section 5.4.1) and 4 approaches
are hybrids of node-link and matrix diagrams (Section 5.4.2).
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Figure 7: Embedded visualization of vertex groups: (a) Node-link-based integrated representations, where groups are included as nodes of
the graph and can be aggregated. (b) Using a hybrid of a node-link and matrix representation of the graph and groups within the graph.

5.4.1. Node-link

Using embedded approaches, the groups Sk ∈ S or Hl ∈ H are
drawn as nodes, e.g. using concave shapes (Figure 7a.1). Group
nodes are connected by visual links if any of their members are
related [CDA*14] , [HN07b, HN07a] . Besides these
aggregated edges, only edges e ∈ E within each group are visual-
ized in a non-aggregated way.

While these techniques are static with respect to the group struc-
ture visualization, the following approaches support interactive ag-
gregation methods: groups or subtrees can be collapsed to visual-
ize only the group node but not the underlying subset of vertices
vi ∈ Sk and their within-group edges (Figures 7a.2 and 7a.3). In
OntoVis [SMER06] , each node representing a group Sk is
connected to all its members vi using visual links in addition to links
encoding the edges of the graph. An approach to visualize the evo-
lution of groups for dynamic graphs is to draw groups as rectangles
on top of a flow-like group evolution visualization; between-group
edges are aggregated and the subgraphs of individual groups are
drawn within the group representations [VBAW15] . Dis-
joint hierarchical groups can be visualized using nested rect-
angular [ASH14, DM12, DM14a, RPD09] or circular [AMA07a,
AMA08, AMA09, AMA11] (3D: spherical [vHvW04]) group struc-
ture representations (Figure 7a.2). Reitz et al. [RPD09] use the
dynamic hierarchical group structure to control the animation of the
dynamic graph visualization and to automatically aggregate sub-
hierarchies that do not change. In contrast to these techniques, the
Adjasankey diagrams [SLAB15] use a one-dimensional
layout of the nodes aligned twice: all nodes that have outgoing links
vertically and all nodes with incoming links horizontally. Edges are
drawn as flow-like rectangular links connecting two nodes. Based
on the hierarchical structure, nodes and links can be aggregated to
group nodes and meta edges.

The grid-based visualization approach by Rohrschneider
et al. [RHR*10] arranges the graph nodes on a regular or-
thogonal grid, where edges are routed on this grid using a cost
minimization technique. Nodes vi contained in different groups Sk

are duplicated. In contrast, Sallaberry et al. [SZPM10] place
nodes belonging to at least two groups between the respective group
nodes, while vertices vi that belong to only one group Sk can be ag-
gregated and collapsed into group nodes. The approach by Vehlow

et al. [VRW13] for fuzzy overlapping groups is similar: it
aggregates vertices vi hierarchically based on their membership de-
grees fik (Figure 7a.3). Van Ham and Van Wijk [vHvW04] collapse
groups by default and show only the area underneath a lens in more
detail. For all other approaches, aggregation is performed by indi-
vidually collapsing or expanding group nodes interactively by click-
ing on group nodes within the node-link diagram [ASH14, DM12,
DM14a, RHR*10, SZPM10] or in a separate tree view [AMA07a,
AMA08, AMA09, AMA11].

5.4.2. Hybrid: Node-link and matrix

We identified four approaches that use matrix representations
to visualize edges within groups and links for relations be-
tween groups [HFM07, HBF08, MZ11, RMF12] . In Node-
Trix [HFM07] , the adjacency matrices are connected to
other matrices using edge bundles that visualize the between-group
relations. This approach was extended to visualize overlapping
groups by duplicating vertices vi for each group Sk they belong
to [HBF08] (Figure 7b). Also the approach by Misue and
Zhou [MZ11] allows one to visualize overlaps using node du-
plication. Here, in addition to the matrices representing groups,
a node is drawn for each group and linked to all its members
vi , i.e. to the respective rows or columns of the matrices or to
single nodes vi not contained in any group and hence matrix.
TreeMatrix [RMF12] encodes hierarchical structures, where
subgraphs Hl are shown as adjacency matrices with an attached
hierarchy that is visualized as a node-link diagram or using an ici-
cle plot (see also Section 5.2.2) and can be collapsed interactively
(Figure 1d).

6. Edge Group Structure Visualizations

The previous part of this survey focused on groups of vertices. Al-
though considering groups based on graph vertices is more common,
also relations can be grouped. This section gives an overview of edge
group structures in graphs and how these groups and their visualiza-
tions fit into the previously defined taxonomies of group structures
and group visualizations. The scope of the survey on visualizations
of edge groups is analogous to that for vertex groups (Section 3.1),
i.e. we only consider techniques that support the visualization of
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Figure 8: Visualization techniques for edge groups of disjoint or overlapping flat groups.

both the edge group structure and the graph topology. We organized
the publications using the same data collection, analysis and tagging
process as described in Sections 3.2 and 3.3.

In analogy to vertex group structures, edge groups can be defined
as a family of sets of edges E = {E1, . . . , EK}, where each Ek ⊆ E

and K denotes the number of groups. We identified visualizations
for disjoint as well as for crisp overlapping edge groups
that were all unstructured, i.e. flat . In disjoint flat edge group
structures , all pairs (Ek1 , Ek2 ), with k1 �= k2 : Ek1 ∩ Ek2 = ∅.
Overlapping group structures , in contrast, contain at least two
sets Ek1 and Ek2 with Ek1 ∩ Ek2 �= ∅. In the following, implicit and
explicit visualization techniques for disjoint or overlapping
flat edge groups will be presented.

Similar to vertex groups, edge groups can be visualized implic-
itly. Within adjacency matrix representations , edge groups emerge
visually as clusters of cells given that the vertices are ordered appro-
priately at the matrix axes [Lii10, MML07]. Using force-directed
layout algorithms for node-link diagrams implicitly shows groups
of edges as well. In addition, within node-link diagrams , edge
bundling methods can be used to deform and visually group similar
edges into bundles. There are three general types of edge bundling
methods for graphs: cost-based, geometry-based, and image-based
edge bundling methods surveyed by Zhou et al. [ZXYQ13]. Edges
are thereby commonly bundled hierarchically.

Often, the implicit encoding is combined with an explicit encod-
ing. Edge bundling is sometimes integrated with the visual edge
attribute color to explicitly visualize groups of edges. Our taxon-
omy for edge group visualizations covers only those edge bundling
techniques that use an explicit encoding in addition to bundling.

There are some visualization techniques that explicitly encode the
edge group structure within the graph visualization. We identified
19 explicit visualization technique papers, which we categorized
according to the same hierarchical taxonomy as for vertex groups,
including the four main categories: visual attributes, juxtaposition-
ing, superpositioning and embedding. As mentioned before, only
flat edge groups could be identified. Therefore, all techniques
presented in this section will be tagged with respect to the type
of overlap only: disjoint (11 techniques) or overlapping
(8 techniques).

The association of an edge with one or more groups can be
encoded visually by changing the visual edge attributes, i.e. the link
in a node-link diagram or cell within a matrix . The use of visual
edge attributes is the most common approach for encoding edge
groups, with 13 out of 19 techniques. Among these techniques, 10
make use of color to encode disjoint [EHP*11, ETB11, GK07,
HF06, TE10, YS15] or overlapping [AZ13, DKL13, YDG*15,
Zec10] groups. In node-link diagrams , links [ETB11] or edge
bundles [EHP*11, GK07, TE10, YS15] are colored with respect to
the group they belong to. If groups overlap , links that belong
to several groups are duplicated and drawn next to each other in
the respective colors [DKL13, YDG*15] (Figure 8b). Color can
also be used for adjacency matrix representations by coloring
the cell with respect to the group the edge belongs to [HF06]. For
overlapping groups , each cell is subdivided into regions—one
for each group—and the region is filled with the respective group
color if the edge belongs to that group [AZ13, Zec10] (Figure 8c).
As an alternative to color, the style of the links within node-link
diagrams can be varied to visualize which group an edge belongs
to [JJ10, Kit03, SGKS15] , e.g. using solid and different types
of dashed links (Figure 8a).
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We identified three juxtaposed visualization techniques
[BPD11, DLR10, RMM15], which can all be used for overlap-
ping groups . All three techniques show the graph topology using
a node-link diagram . Detangler [RMM15] visualizes the rep-
resentation of groups separately from the graph; both views are
connected by brushing and linking (Figure 8e). In the node-link-
based group representation, each node represents a group of edges
Ek , with relations between groups if they share any edges. Other
approaches show the graph multiple times—once for each group
of edges [BPD11, DLR10]. Both techniques make use of a fixed
one-dimensional [BPD11] (Figure 8f) or two-dimensional [DLR10]
node-link layout that is reused for each group, and hence, graph rep-
resentation. Didimo et al.[DLR10] use color in addition to the
juxtaposition.

We are aware of only one superimposed visualization technique,
in particular, a line overlay approach. Vehlow et al. [VHTW13]
visualize pairs of edges—i.e. |Ek| = 2—within a node-link dia-
gram by connecting the respective links with curves (Figure 8d).

We identified two embedded visualization techniques, one that
shows the graph as a node-link diagram [PvW08] and one that
shows the graph as a matrix representation [DHRW15]. Pretorius
and van Wijk [PvW08] visualize edge groups as nodes positioned in
the center of the visualization. The edges of the graph are partitioned
by letting every link pass through the node that represents its group
(Figure 8g). The Dual Adjacency Matrix [DHRW15] visualizes the
edge groups integrated into the graph visualization (Figure 8h). The
rows (columns) of the top left quadrant represent edge groups. The
graph is visualized in the bottom right quadrant of the matrix; rows
(columns) can be aggregated to vertex groups. The two remaining
quadrants show which vertices (vertex groups) are covered by which
edge groups.

7. Tasks

Depending on the application and the type of group structure, dif-
ferent tasks are relevant for conducting a visual analysis of group
structures in a graph. Lee et al. [LPP*06] present a list of tasks
for visualization that are commonly encountered while analyzing
graph data. Among these tasks, they list the identification of clus-
ters (groups) as an important task. Saket et al. [SSK14] introduce a
task taxonomy for group-related graph tasks for disjoint flat vertex
groups . Their tasks concentrate on vertex groups visualized
within node-link diagrams using a map metaphor—a superimposed
contour approach. Following their task taxonomy, we group tasks
into four categories, including group-only, group–vertex, group–
edge and group–network tasks. However, we define the task cate-
gories slightly different, as described in the following. Group-only
tasks can be performed by only considering the groups, i.e. the num-
ber K or L of groups contained in S, E or H or the nesting structure
of subgroups Hk ∈ H; no vertex or edge information is required.
For group–vertex tasks, both group and vertex information has to be
considered, i.e. everything described by S or H. Group–edge tasks
can be performed by only taking group and edge information into
account, i.e. everything described by the edge group structure E .
For group–network tasks, all information—group, vertex and edge
information—has to be considered. This includes the graph G and
the group structure S, E or H, respectively. Therefore, we cate-

gorize tasks such as ‘count the number of edges in a given vertex
group’ as group–network task, rather than group–edge task as done
by Saket et al. [SSK14], because these tasks indirectly require the
information of which vertices are contained in the groups.

The task taxonomy by Saket et al. [SSK14] is limited to disjoint
flat vertex group structures . We extend their task taxonomy to
cover tasks for disjoint hierarchical groups and overlapping
flat groups . We also searched for tasks for overlapping hier-
archical groups , but—due to the yet limited coverage of such
visualizations in literature—we did not find any specific tasks that
were not yet covered by the previously mentioned task categories.
To collect tasks for different types of groups structures, we went
through all technique, evaluation, and application papers for ver-
tex or edge groups in graphs and searched for particular keywords,
including ‘task’, ‘question’, ‘?’, ‘identify’, ‘analyze’, ‘determine’
and ‘find’. All tasks were abstracted to phrasings using the words
vertex, edge and group, e.g. the task ‘identify people belonging to a
particular society’ was rephrased to ‘which vertices are associated
with a given group?’.

Table 4 shows an overview of all collected and abstracted tasks
for each of the four group structure categories. The tasks are sub-
grouped with respect to their type: group-only task (GOT), group–
vertex task (GVT), group–edge task (GET) or group–network task
(GNT). Most of the tasks relate to vertex groups (marked with
VG) and only few tasks refer to edge groups (marked with EG).
In addition, the references from which the tasks were collected are
integrated into the table. First, all tasks for disjoint flat groups
are listed. These also apply to disjoint hierarchical groups,
considering subgroups Hl rather than groups Sk . For overlapping
flat and overlapping hierarchical groups, these tasks
apply as well, where some tasks need to be rephrased slightly to
consider that a vertex may belong to different groups. Although
not listed in the table, in analogy, tasks for overlapping hierarchical
groups are a superset of all tasks listed in the table; so far,
no tasks were proposed that require overlapping and hierarchical
groups for a single tasks.

8. Evaluation

Our collection of publications contains only few evaluation papers
that describe extensive user studies (8 in total, 6 for vertex groups
and 2 for edge groups), but most of the technique papers include
some kind of evaluation (see evaluation tags in Table 2). In this
section, we summarize the results presented in the 8 evaluation
papers as well as insights gained from user studies contained in
technique papers that thoroughly evaluate group-related tasks (4 in
total).

Contrasting visual node attributes (Section 5.1) and superim-
posed techniques (Section 5.3), a series of four recent user studies,
by now, provides the most systematic evaluation of visualization
techniques in the field: Saket et al. [SSKB14] compared a
superimposed contour approach (GMap [GHK10]) against the use
of color as a visual node attribute (Section 5.1). They investigated
several network-based as well as group-based tasks for disjoint flat
group structures including group–vertex tasks and one group–edge
task. The results of their user study with 36 participants suggest
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Table 4: Group-related tasks for different types of group structures: disjoint flat, disjoint hierarchical, overlapping flat and dynamic group structures. The
tasks are grouped with respect to their type: group-only task (GOT), group–vertex task (GVT), group–edge task (GET) or group–network task (GNT). Tasks
that relate to vertex groups or edge groups are marked with VG or EG, respectively.

Disjoint flat group structures
GOT VG What is the number of groups in S? [HRD10, JRHT14, SSK14, SSKB15]

EG What is the number of groups in E? [EHP*11, HF06]
GVT VG Which vertex group Sk is the largest (smallest)? [APP10, DS13, HD12, SSK14] – How large is the size difference between two

vertex groups? [HRD10, JRHT14] – Which vertex group Sk does a given vertex vi belong to? [SSK14, SSKB14, SSKB15] –
Which (how many) vertices are associated with a given group? [AHRRC11, DEKB*14, DvKSW12, PLS*13, SSK14, VKB*15,
VPF*14, XDC*13] ([DS13, SSK14, SSKB14]) – Does a set of vertices belong to the same group? [JRHT14, SSK14, SSKB14]

GET EG What is the size of a given edge group Ek? [EHP*11, HF06] – Which group Ek does a given edge ej belong to? [ETB11] – Which
edges ej are outliers, i.e. isolated edges or missing edges in a group? [HF06]

GNT VG Which one is the vertex with the highest degree in a particular group? [CSL*10, GMT09, HD12, JRHT14, PSK11, SSK14] –
Which vertices of a group are related to vertices of other groups? [GMT09, WWY*15] – Which group is most connected to a
particular vertex or group? [APP10] – Given two vertices A and B, how many groups have to be passed on the path from A to
B? [JRHT14, SSK14] – How many vertices (edges) need to be removed to disconnect two given groups? [SSK14] – Given two
vertex groups, how strongly are they coupled? [CDA*14, SSKB14, WWY*15, YLZ*13] – Given a vertex group, how strongly is
this group coupled to other groups? [CDA*14] – Which vertex group has the maximum number of adjacent groups? [CDA*14,
CSL*10, HBF08, LWC*14, SSK14] – What is the number of edges within a given vertex group? [SSK14] – Which group is the
most sparsely (most densely) connected vertex group? [CSL*10, GMT09, PSK11, SSK14]

EG Which pairs of vertices have a relation from a particular edge group Ek? [ETB11] – Which vertices are covered by a given edge
group Ek? [DHRW15] – Which edge groups Ek share many vertices? [DHRW15] – Which edge group Ek is sole vertex
connector? [DHRW15]

Disjoint hierarchical group structures
GOT VG What is the hierarchical structure of the graph? [HN07b] – What are the top-level or bottom-level parts of the hierarchy? [DWS*14]

– Given a group, which subgroups are direct children of this group? [GZ11]
GVT VG Which subgroups Hl is a vertex directly or indirectly allocated to? [GZ11] – Which subgroup is the earliest common parent of a set

vertices? [GZ11] – What are the top-level or bottom-level parts of the hierarchy? [DWS*14]
GNT VG Which subgroups Hl of the hierarchy have a high degree of within-group edges, i.e. which groups are cohesive? [ABZD13, BPD11,

RMF12] – Which subgroups Hl of the hierarchy have a high degree of between-group edges, i.e. which subgroups are
coupled? [ABZD13, BPD11, DWS*14] – How are edges of the graph linked to the hierarchical group structure, i.e. does the
hierarchical group structure reflect the graph topology? [BD13, NSC05] – Are there edges between different layers of the
hierarchical group structure? [RMF12] – Which vertices are involved in such cross-layer edges? [RMF12]

Overlapping flat group structures
GVT VG Which groups overlap? [AHRRC11, DEKB*14, LWC*14, VPF*14, XDC*13] – To what extent do groups overlap? [DvKSW12,

HRD10, VPF*14, XDC*13] – Which vertices are associated with only one group? [HBF08, ST08, VRW13] – Which vertices are
associated with at least two groups? [GMT09, LWC*14, PF15, ST08, SZPM10, VKB*15, VRW13] – Which vertices build
bridges between groups, i.e. vertices whose removal disconnects the groups and makes them disjoint? [BPF14, GMT09, HBF08,
LPP*06, VRW13] – Which groups does a given vertex belong to? [AHRRC11, DEKB*14, DvKSW12, HRD10, VPF*14,
VRW13, ZXQ15, XDC*13] – For fuzzy overlapping groups, this question can be extended to: To what extent does a given
vertex contribute to its groups? [VRW13] – Does a set of particular vertices belong to the same groups? [AHRRC11] – Which
two groups share the largest number of vertices? [HBF08] – Which vertices are in group A and/or B? [DvKSW12, HRD10] –
Which vertices are in group A but not in B? [DvKSW12, HRD10]

GET EG Given multiple groups, what are their common edges? [MGK11] – Given an edge, is it part of multiple groups? [MGK11]
GNT VG How does the overlapping group structure map to the graph topology? [BT06] – Which group is the most central one, i.e. the group

that shares vertices with high degree with the largest number of other groups? [HBF08] – Which groups share the largest number
of vertices with high degree, and hence, have the strongest cohesion? [HBF08]

that adding contours does not negatively impact the performance of
network-based tasks and the GMap approach outperforms colored
nodes with respect to group-based tasks. In a second study, Saket
et al. [SSKB15] report on experiments measuring the
extent to which people remember the data depicted in these two
types of group structure visualizations. The 40 participants of the
study had to do tasks—including one group-only task and one
group–vertex task—four days after being exposed to the visual
stimuli. The results suggest that participants recall data shown
with colored contour-based approach more accurately than using

color only with differences in the accuracy of the tasks performed.
Jianu et al. [JRHT14] replicated the first study by Saket
et al. [SSKB14] and included two more approaches in their online
study comprising 800 participants. They evaluated colored nodes,
line overlay and two types of contour overlays—GMap [GHK10]
and BubbleSets [CPC09]—based on 5 group-based and 5 network-
based tasks. The group-based tasks included two group-only tasks,
one group–vertex task and two group–network tasks. With respect
to group-based tasks, BubbleSets performs best, followed by lines
and the GMap approach, while color appears to be least effective.
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Line overlays (LineSets) were also compared to contour
overlays—again the BubbleSets technique—by Alper et al.
[AHRRC11] . They conducted a user study (12 participants) to
evaluate the performance on four tasks—two group-only tasks, and
two group–vertex tasks for overlapping flat groups. Compared to the
study by Jianu et al. [JRHT14], they found that LineSets improve
the readability of set membership and set intersection tasks– - with
higher accuracy rates and shorter completion times—compared to
the BubbleSets technique. They also did an informal, small-scale
eye-tracking study that aimed at understanding some of the effects
seen in the quantitative results.

Other evaluations focus solely on superimposed contour ap-
proaches (Section 5.3.2): Henry Riche et al. [HRD10] evaluated
their Euler diagram technique with respect to its read-
ability considering five tasks—three group-only tasks and two
group–vertex tasks for overlapping flat groups. In their study
(18 participants), they compared their two rectangular contour over-
lay techniques—the splitting approach and the node duplication
approach (Section 5.3.2)—to a third (non-convex) contour over-
lay. They found that the duplication approach outperforms the
other techniques for two of the group-related tasks, but the split-
ting approach is preferred by many participants. Using a quali-
tative evaluation, Byelas and Telea [BT09a] compared
algorithmically generated contour overlays to hand-drawn con-
tours to improve the rendering algorithm. The GraphDiaries tech-
nique [BPF14] was evaluated based on a user study
comparing it to two other approaches for dynamic graphs. The focus
of the study lies on tasks related to the dynamic behavior analyzing
groups of added or removed elements.

Some evaluations also take embedded approaches into account
(Section 5.4): Archambault et al.[APP10] compared the
use of color as a visual node attribute with an embedded approach,
where groups of nodes are replaced by colored group nodes. They
evaluated how this affects the readability, but with respect to tasks fo-
cusing on attributes and graph topology rather than group structures.
In contrast, Henry et al. [HBF08] evaluated their embedded
hybrid approach with respect to six tasks—three group–vertex tasks,
one group–edge task, and two group–network tasks for overlapping
flat groups. Their user study (12 participants) applied different alter-
natives of vertex duplications in overlapping groups and compared
these to an embedded approach without duplication. As a result, they
found that duplications improve group-related tasks but sometimes
interfere with other graph readability tasks.

Hierarchical group structures in graphs have been rarely evalu-
ated, so far; the same applies to juxtaposed approaches (Section 5.2).
There is only one user evaluation on superimposed contour visual-
izations in the context of hierarchies [FKH15] comparing a
hierarchical against a flat contour-based visualization. The 29 par-
ticipants of this study were asked typical software system compre-
hension tasks that do not affiliate in our derived set of group-related
tasks. With respect to these tasks, they found a statistically signifi-
cant increase in task correctness of their hierarchical visualization.

All these evaluations focused on visualizations for vertex groups.
Abuthawabeh et al. [ABZD13] present a study evaluating two vi-
sualization techniques for overlapping edge groups: the use of
color within the matrix [AZ13, Zec10] (Figure 8c) and the jux-

taposed attached approach as illustrated in Figure 8f [BPD11] .
Both techniques visualize the disjoint hierarchical vertex
group structure in addition to the edge groups using a juxtaposed at-
tached visualization of the hierarchy. The tasks of their study aim at
comparing different edge groups considering the hierarchical vertex
group structure at the same time. They found that all 8 participants
were able to identify equivalent edge-groups forming hierarchical
groups in the presented graphs. Also Melville et al.[MGK11]
compared two color-based matrix approaches, one that shows all
edge groups in one matrix (Figure 8c) and one that shows the edge
groups juxtaposed using small multiples of the matrix. Based on
their study including 18 participants and two group–edge tasks,
they found that the comparison of edge groups using one matrix
was better than using juxtaposed matrices by nearly 50%.

9. Application

Group structures occur in various application domains of graphs. In
total, comprising application, evaluation and technique papers, the
most common application domains for the visualization of vertex
group structures are social networks (48 papers), biology (36 papers)
and software engineering (29 papers). For edge groups, biology
(9 papers) and software engineering (7 papers) can be considered
the two main application domains. In this section, we summarize
mainly the application papers but occasionally also technique pa-
pers with a focus on these areas. Further application domains of
group visualizations are economy networks representing business,
transport, or financial data, computer networks, relations between
documents or texts, or relations within media data or sports-related
data.

In biological applications, graphs are almost exclusively rep-
resented as node-link diagrams . In particular in protein–protein
interaction networks and gene correlation networks, disjoint
and overlapping flat group structures occur. These mainly
result from categorical attributes of the genes or proteins, e.g.
from cell compartment and pathway associations or from gene
ontology annotations; also clustering is applied to extract motifs,
i.e. functional groups of proteins. Commonly, group structures
are visualized by visual node attributes [BST03, DC11, FGB*07,
TvDEF09] and superimposed techniques—including overlaid con-
tours [PLS*13, RRAS08, SXS*12, VHK*13, VKB*15] and par-
titioning approaches [BMGK08, GFK*14, PK06, SLK*09]. Also
attached juxtaposed [SJUS08] and embedded [RHR*10, VRW13]
approaches have been applied to biological networks. Edge groups
in biological networks usually represent different types of biological
reactions or different contexts where these reactions occur. These
disjoint groups are commonly visualized using the visual edge at-
tributes color [DC11, LYKB08] or style [GHM*02, JJ10, JKS06,
Kit03].

In social networks such as friendship, communication, collabo-
ration or co-authorship networks, vertices represent people, whereas
edges encode relationships between them. Groups of vertices,
therefore, identify circles of friends, groups that cooperate, or the
like. Social groups, also called communities, may be disjoint
but are often modeled more realistically by overlapping groups
because people often participate in a multitude of diverse, yet
overlapping social communities. So far, social communities have
been visualized mainly within node-link diagrams . Similar to
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the biological domain, the group structure is commonly visualized
by visual node attributes (color) [CMF*14, PSK11], superimposed
visualization, in particular using line [AHRRC11, XDC*13] or
contour overlays [CCC02, DLM14, PS06, SCL*09], or using color
and contour overlays in combination [GMT09, HD12, HB05].
Hierarchical group structures in social networks, in contrast, are
often visualized in attached juxtaposed views together with
static [GZ11] or dynamic graphs [BBV*12, GSZ*11]. Also em-
bedded approaches have been applied to social networks [AMA08,
DM14a, HBF08].

In software engineering, network visualization is used to analyze
program structures and their hierarchical organization , which is
usually given by the modularization of the software system. Within
software architecture diagrams, also software metrics can be used to
define disjoint or overlapping flat group structures [BT09b,
TLTC05]. The hierarchical structure of call graphs or other depen-
dency networks is commonly visualized using attached juxtaposed
visualizations [BPD11, BD13, PvW07, PvW08, SJSJ05, vH03], su-
perimposed contours [RFG05], or embedded approaches [PGKG08,
RMF12]. Overlapping group structures can be visualized using
glyphs [TLTC05] and overlaid colored [BT09a] or textured [BT09b]
contours. Edge groups in software engineering might represent dif-
ferent types of code couplings, e.g. inheritance, aggregation, and
usage couplings. These overlapping edge groups are commonly vi-
sualized using the visual edge attribute color [AZ13, ETB11, TE10,
Zec10], juxtaposition [BPD11], or embedding [PvW08].

10. Research Challenges

The taxonomy of techniques shows what has been achieved in the
field and reveals possible gaps in the research literature. However,
not necessarily, every gap is a good research opportunity and there
might be other interesting challenges that are not indicated by gaps
in the taxonomy. To provide ideas of worthwhile future research, we
discussed research challenges with respect to vertex group structures
with other researchers who have substantially contributed to the
field. We interviewed 7 experts in graph or group visualization face-
to-face—on average for about 40 min per person. We first showed
a preliminary version of our taxonomy of vertex group structure
visualizations containing illustrations of existing techniques (sim-
ilar to Table 3), explained our interpretation of vertex groups and
group structures in graphs and asked them for feedback on terms
and definitions—this feedback is already reflected in the terms used
in the definitions (Section 2.1) and taxonomy of visualization tech-
niques (Section 5). The main purpose of these interviews, however,
was to ask for the experts’ opinion on open problems and challenges
on visualizing vertex group structures in graphs. Besides challenges
they named, we also discussed the challenges that we identified
beforehand, in case they did not mention them already. Based on
the feedback we received within the interviews and some of our
ideas, we identified five main challenges for vertex groups—each
regarded as relevant by 2 to 5 experts. For edge groups, we have
not yet conducted any interviews. In general, there is a remarkably
great difference in the number and variety of techniques for edge
groups compared to vertex groups. The fact that edge groups have
been considered less than vertex groups suggests that visualizing
edge groups is a challenge itself.

10.1. Time-varying groups and comparison

In many application domains, graphs are not static but change over
time, i.e. their topology or their attributes change over time. It fol-
lows that the topology-based or node-attribute-based group struc-
tures also change over time. If changes in the graph are significant,
the group structure should be determined for each point in time indi-
vidually. In contrast, for minor changes in the graph topology or at-
tributes of the graph, it is often sufficient to visualize the static group
structure. Most techniques that have been developed to visualize the
evolution of groups, do not visualize the graph topology [FBS06,
OMB*07, RTJ*11, RB10]—for this reason, these are not part of our
taxonomy. Other approaches focus on the visualization of dynamic
graphs but not the temporal evolution of groups; they visualize the
group structure aggregated over time.

First attempts have been made to visualize both the evolu-
tion of groups and the dynamic graph together either using an-
imation [HKV14, KG06, RPD09] or using a timeline-based ap-
proach [AFH*10, MH15, SMM13, VBAW15], but these only cover
evolving disjoint flat or hierarchical group structures . Related
to dynamic graphs is the problem of graph comparison: instead of
several graphs in a sequence, an unordered set of graphs is com-
pared. Similarly, the comparison of groups structuring these graphs
has not yet been discussed in this context.

10.2. Data complexity

Instead of having multiple versions of the data, the data itself can
get more complex by adding or refining data dimensions. For over-
lapping groups , for instance, the visualization of fuzzy mem-
berships is challenging, where vertices may belong to different
groups with different extent (see Section 2.1). Although the detec-
tion of fuzzy overlapping groups has become quite popular in the
domain of graph clustering [For10], their visualization was only ad-
dressed in one work so far [VRW13]. In many applications, groups
need to express a degree of uncertainty that can be modeled as
fuzzy groups. Another degree of complexity could be introduced
by the topology of the group structure: so far, most of the visual-
ization approaches that were developed for overlapping groups
can handle only flat group structures (Table 1). However, also
overlapping groups can be organized hierarchically , for example,
derived from an ontology, through clustering, or other sources. The
complexity of the group structure visualization also increases when
multivariate attributes of vertices and edges need to be visualized
together with the graph. These attributes could, for instance, explain
why certain elements are grouped together or why a pair of groups
overlaps.

10.3. Scalability

The data do not need to get more complex, but already visualizing
more data elements can be challenging. In graph visualizations,
questions of scalability usually relate to the number of vertices and
density of edges. Visualizing additional group structures, however,
introduces further challenges. For an increasing number of groups,
for instance, encoding the groups by colors becomes difficult
for more than about 7 groups [Hea96]. There are already some
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approaches that optimize the color assignment (Section 5.1), but
there is still potential to improve and extend these approaches. Also,
for larger numbers of groups, coloring approaches probably need to
be replaced by other group representations.

But even having a constant number of groups, scalability issues
could arise from increasing the overlap of groups . For instance,
superimposed approaches (Section 5.3) become more and more
cluttered through a denser overlay of group structures. Maybe, even
new representations need to be found to handle datasets with large
overlap of many groups. In hierarchical groups , also the depth
of the hierarchy could become a problem of scalability for some
visualizations.

10.4. Interaction technique

One way to address certain issues of scalability is the use of inter-
action methods such as aggregation, which already is a widely used
method—30 of the 111 collected technique papers support aggrega-
tion. But some data are lost through this abstraction. The question,
therefore, remains how to aggregate while, at the same time, visually
encoding the uncertainty of aggregated groups and the density of
edges within these groups. For overlapping groups , aggregation
is even more difficult because overlaps either need to be represented
explicitly or the overlap is not retrievable for the users. Also, there
is a need for advanced interactive (semi-) automatic aggregation
methods that guide the user through large datasets or define a good
default aggregation.

Beyond aggregation, there is also potential in visual analytics ap-
proaches that combine data mining methods with the visualization
of group structures in graphs into an interactive approach. Clus-
tering and classification algorithms could provide alternative group
structures on demand. To update the data in a comprehensible way,
the visualization needs to adapt on the fly, which introduces new vi-
sualization challenges. Similar updates are required when the users
edit the group structures interactively, for instance, by applying set
operations to the groups.

10.5. Tasks and evaluation

To choose the right type of group structure visualization for a partic-
ular application, we need to be aware of the tasks users want to solve
with the help of the visualization. Application-specific tasks can be
generalized to abstract data tasks, generalizable to different applica-
tions. There was already work done for disjoint flat groups [SSK14],
which we extended to overlapping groups , hierarchical struc-
tures , and dynamic groups as well as to edge group structures
(Section 7 summarizes tasks from papers of our bibliography). Also,
it is important to study how basic data-related tasks are composed to
complex task and which complex tasks are most relevant in specific
areas of application. Then, it can be investigated which visualization
technique is suitable for which application. Some evaluations have
already been conducted (Section 8) but cover the techniques dis-
cussed as part of our taxonomy only partially. Advanced evaluation
methods to better understand perceptive and cognitive processes
such as such eye tracking [KFBW14] have rarely been applied in
the field [JRHT14].

11. Conclusions

We presented the state of the art in explicitly visualizing vertex or
edge group structures in graphs. Groups are disjoint or overlapping,
and might be flat or structured hierarchically. In this survey, we
brought together various group visualization techniques for graphs
that have been discussed separately, so far. Based on the collected set
of publications comprising all these techniques, we derived a taxon-
omy of visualization techniques consisting of four main categories:
visual node attributes encode group information in the appearance
of a node, juxtaposed approaches visualize graph and group struc-
ture in separate views, superimposed techniques use visual overlays
and embedded representations combine the graphs and groups into
an integrated visualization. In addition, we collected and abstracted
group-related tasks described in the papers of our bibliography and
categorized them with respect to the type of group structure and
type of task including group-only, group–vertex, group–edge, and
group–network tasks. We intersected the visualization taxonomy
with a taxonomy of group structures to a lineup showing which
visualization has been already used for what type of structure. The
comparison hints at opportunities to fill gaps in existing research lit-
erature. Based on interviews with experts in the field, we identified
important challenges that could guide future research.
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