Visualization & Visual Analytics 1 Angus Forbes

creativecoding.evl.uic.edu/courses/cs424

What is this class about?

- **Information Visualization**
- Effective ways to interact with and represent different types of data – often involves designing new techniques that can be applied in many contexts
- **Visual Analytics**
- Effective use of visual interfaces to solve complex problems - often involves a combination of techniques specific to a particular industry or domain

Viegas and Wattenberg, 2012 "Wind Map"

Holten, 2006 "Hierarchical Edge Bundling"

Riche and Dwyer, 2012 "Compact Rectangular Euler Diagrams"

Shneiderman, 1992 "Treemaps"

Partl et al., 2014 "ConTour"

Kamaleswaran et al., 2016 "PhysioEx"

Zhao et al., 2016 "PivotSlice"

Dang & Forbes, 2016 "BioLinker"

(Interactive) Infographics

- Generally static or have a limited set of interactions
- Often highlight particular elements to encode a specific narrative
- Normally utilize a minimalist palette in order to help viewer focus on important concepts

Minard, 1869 "Napoleon's 1812 Invasion of Russia"

Nightengale, 1858 "Diagram of the Causes of Mortality in the Army..."

Parlapiano & Sanger-Katz, 2016 "Shifts in Power"

What will you learn?

- Science
- Data science: Extracting insight from data, especially "big data"
- <u>Scientific method</u>: Observation, data collection, hypothesizing, experimenting, testing, analyzing, communciating
- Engineering
- Coding + software development, D3.js, Javascript, working in teams

What will you learn?

Visualization

- How to creatively and effectively choose visual encodings (color, shape, motion, etc.) for different types of data (tabular, network, textual, geographic, temporal, etc.);
- How to develop tools to support a range of visualization tasks (*analysis*, *annotation*, *exploration*, *comparison*, etc.);

- How to think of visualization projects in terms of the larger context of the needs and goals of the intended audience

How will you learn?

- **Projects & Presentations**
- P1, "Quantified Self" Test out different visual techniques for a (relatively) straightforward dataset Individual project
- P2, "Integrated Datasets" Explore how to integrate multiple techniques to find relationships between data from multiple datasets – Group project
- P3, "Unsolved Problems" Develop new techniques to represent complex data to solve complex problems – Group project

How will you learn?

- Assignments & Quizzes Read textbook and articles + study contemporary programming techniques for information visualization
- Participation
- Learn from and teach each other; make sure you understand the material; find ways to make the material meaningful to you

Homework for Thursday

- Bring in an example of a data visualization that you have seen that you like. Be ready to explain to your classmates what you find to be interesting about it.