An Interactive method to control Computer Animation in an
intuitive way.

Andrea Piscitello
University of Illinois at Chicago
1200 W Harrison St, Chicago, 1L

apisci2@uic.edu

ABSTRACT

Human Computer Interaction is a rising field of computer
science and perfectly fits among Computer Graphics scopes.
The video-game industry is focusing on this field in order
to provide always more realistic and engaging game expe-
riences. The bond between animation and user movement
seems to be destinated to be closer in future.

Author Keywords
Keyframing, Rigging, Mophing, Warping, Blending.

INTRODUCTION

Computer Animation is the process of generating animated
images in computer graphics scenes. It is one of the most an-
cient branches of Computer Graphics and its foundations can
be traced in 60’s, when at Bell Labs, scientist were studying
the possibilities of computer computations. The first remark-
able example of computer-generated animation, however, is
the 1972 short film ”A Computer Animated Hand”, produced
by Edwin Catmull and Fred Parke at the University of Utah
[1]. This film is very important since it contains many tech-
niques and approaches which are the ancestors of the ones
used until today. Mostly because of the poor technologies
and computational power available at that time, the major-
ity of the works conducted to make the animation were done
manually. In fact a real model of the hand was constructed
and polygons were drawn in ink on it.

Since 70’s the exponential growth of computational power
opened the door to advanced tools that accomplishes heavy
tasks, like animation in an automatic way.

Today’s most used techniques are morphing and skeletal an-
imation. The first one basically consists in recording the
position of all the vertexes of the mesh in some keyframes.
The positions of vertexes in the frames between keyframes
are calculated using interpolation. Keyframing and interpo-
lation, together with other main techniques are described in
the Pixar paper “Principles of Traditional Animation Applied
to 3D Computer Animation” [2]. Morphing, which requires
the recording of big quantity of data and the modeling of each

Ettore Trainiti
University of Illinois at Chicago
1200 W Harrison St, Chicago, IL

etrain2 @uic.edu

keyframe by defining the position of each vertex, may result
in very tedious task to perform. For this reason, skeletal an-
imation is often preferred. This method is composed of two
phases: rigging and animation. Rigging consists in defining
a skeleton made of bones. Parts of the mesh are associated
to each of these bones in order to define which bone is re-
sponsible of deforming a part of the object. The animation is
then designed by defining the position of each bone in each
keyframe and interpolating the inbetweens. For big produc-
tions like movies and videogames, the animation design is
executed by means of more powerful techniques like for in-
stance motion capture. Motion Capture is a technique, which
takes advantage of special suits that actors dress and that cap-
ture every movement they do. This process can be also exe-
cuted for capturing facial expression by simply putting spe-
cial indicators on actors’ faces.

With the technique described until now, it is possible to de-
fine just an animation at a time. In order to mix together two
or more animations a different approach is needed. In Mo-
tion Warping paper by Andrew Witkin and Zoran Popovic [3]
a simple technique for editing captured or keyframed anima-
tions is introduced. The idea is the same of image morphing
applied to 3D animated geometries. Once a set of keyframe-
like constraints is defined, this technique derives a smooth de-
formation that preserves the structure of the original motion.
The authors’ goal is in fact to derive new motion curves for
inbetweens based on the specified key frames. Each motion
curve is treated independently from each other and therefore
each joint can be considered separately. A timewarp function
can also be set to better fit the animations needs. The authors
in the paper demonstrate that a wide range of realistic motions
can be created or derived by warping and joining keyframes
or motion clips. A limitation of this approach is that motion
warping is a purely geometric technique and is totally un-
aware of the motion structure. The authors work also shares
the same problem that image morphing has: extreme warps
are prone to look distorted and unnatural.

METHOD

The method proposed in this paper include some of the tech-
niques previously described and in particular animation is ac-
complished using keyframing and the skeletal approach. Dif-
ferent animations are then blended together using the motion
warping technique.

The aim of this paper is also to provide the final user with
some controls to drive the animation and manage the blend-
ing factors of different animations. Some examples of inter-
active computer graphics applications are provided in "Mo-

tion Sketching for Control of Rigid-Body Simulations” [4]
and “Motion Doodles: An Interface for Sketching Charac-
ter Motion” [5]. The first one provides a method for defin-
ing a physics-based application exploiting mouse motion or
hand gestures. The second proposes an approach based on
some pre-recorded animation that are mapped to user inputs
performed through pen gestures on a tablet. These two ap-
proaches though consist in two main steps: animation de-
scription and successive execution.

The method proposed in this paper, on the contrary, provide
a real-time technique to command the animation. Using a
device which is equipped with appropriate sensors and/or ac-
tuators is very useful to properly control the animation.

The user interaction is a key point in the proposed method
since allows to exploit animations in a real-time way and
opens the door to a set of applications in the entertainment
or educational field. Moreover, the abundance of sensors in
common mobile devices may result the added value in the
view of a wide commercial distribution.

IMPLEMENTATION

In order to provide a real feedback of all techniques in-
troduced in this paper, a simple implementation has been
produced. The demo that has been implemented, regards
the modeling and the animation of a character walking and
tilting arms, in such a way to recall a person moving on a
narrow surface like a rope.

The workflow consisted in different steps:

e Object texturing

e Skeleton rigging

e Keyframing animation
e Scene programming

e Animations blending

e Mobile Controller Programming

The first three phases have been executed using Blender, a
professional free and open-source 3D computer graphics soft-
ware used for creating animated films, visual effects, interac-
tive 3D applications and video games. For the following two
steps three.js, a JavaScript library for WebGL, has been used.
Three.js allows the user to easily produce graphics projects
that are completely cross-platform exploiting the power of the
browser programming.

Finally the mobile controller has been implemented as an ap-
plication installed on an Android device.

The first step has been to find a model object to animate.

Object Texturing

After having selected the object model for the animation a
simple color texture has been created and then applied to it.
This is a very basic task to execute in Blender and it has taken
just the time to learn the specific commands.

The object that has been used had been designed keeping the
different parts of the body separated. In this way it has been

Figure 1. Texture image (right) and partial application of it (left).

very simple to apply the right texture color to the right part
of the object. After the texturing process, the different com-
ponents of the body have been merged together in order to be
managed in an easier way during the following steps.

Skeleton Rigging

This has probably been the most difficult and time consuming
part. Very basic knowledge of human anatomy are sufficient
to describe a working skeleton for a humanoid character. Al-
though it can be accomplished in a relatively short time (once
learned all the Blender commands and shortcuts), in order to
obtain a realistic result, many corrections and optimizations
have been necessary.

This process is basically made of two sub-steps. The first
one consists in actually building the skeleton bone by bone.
Each bone that has been created, correspond to the real hu-
man counterpart.

Figure 2. Arm bone positioning.

After having defined the whole skeleton, for each bone an
area of interest is defined. This task can be accomplished
quite easily by using some brush tools that allow to increase
or decrease the influence of each bone on a specific area of the
mesh. It is a very intuitive task, since the level of influence

of each bone is represented using a range of colors that goes
from blue (0) to red (MAX).

Figure 3. Area of influence of the left forearm.

The process have been reiterated different times because of
some problems mostly due to the three.js exporter plugin for
Blender. The right combination of some exporting parameters
is needed to make animation work into three.js.

Keyframing animation

The animations have been designed with the keyframing
technique. Few crucial keyframe have been defined leaving
the interpolation task to the software responsible of the
animation.

Five animations have been modeled:

e Idle position

o Left tilt

Right tilt
Forward Walk

e Backward Walk

As can be easily noticed, some of them are simply symmetric
to each other.

Walk Animation Design

The walk animation design deserve a separate paragraph.
Even if it seems to be an easy animation, its modeling is not
properly straightforward. First of all it has been necessary to
clearly figure out which bones are involved in walking and
how they actually move. After a brief empiric study a first
semi-realistic walk has been designed.

Taking advantage of some of the concepts described in the
paper ”Goal-Directed, Dynamic Animation of Human Walk-
ing” by Armin Bruderlin [6], a more realistic walk has been
produced.

Figure 4. Some frames from the walk animation modeling.

Scene programming

This is the first step that have been actually executed on the
three.js framework.

A simple scene is created with few commands. The ambient
light is defined and two directional lights are added in dif-
ferent positions, in order to have a good overall illumination.
Finally the mesh is loaded from the JSON file that has been
previously exported from Blender.

Listing 1. Basic scene programming
scene = new THREE.Scene();

scene.add (new THREE.AmbientLight (GRAY)) ;

var light = new THREE.DirectionalLight (WHITE,
1.5);

light.position.set (0, 0, -1000);

scene.add (light) ;

var light2 = new THREE.DirectionalLight (WHITE,
1.5);

light.position.set (0, 0, 1000);

scene.add (light2);

blendMesh = new THREE.BlendCharacter();
blendMesh.load ("model/homer. json", start) ;

A simple menu with basic controls to command the animation
has been implemented. It allows to define the weights of all
the animation that have to be blended in the final one.

Animations blending

- Skeletal Animation Blending Settings

Adjust blend weights to affect the animations that are currently playing.
Cross fades (and warping) blend between 2 animations and end with a single animat

Lock Camera
Show Model
1[4
Device

Playback

Blend Tuning
Left
Right
Forward
Backward

Speed

Close Controls

Figure 5. Final result

The animations are merged together accordingly to the
weigths previously assigned.

The following code represent the process of starting an ani-
mation setting weights to each component.

Listing 2. Animations blending
function onStartAnimation(event) {

var data = event.detail;
blendMesh.stopAll();

for(var i = 0; i1 < data.anims.length; ++i) {
blendMesh.play (data.anims[i],
data.weights[i]);
}

isFrameStepping = false;

Mobile Controller programming

In order to provide the user with some basic controls to com-
mand the animation evolution, a simple Android application
has been developed. This application basically consists in a
HTTP Server that has the role of respond to HTTP REST calls
invoked from a dedicated module inside the three.js program.
The application sends accelerations values of the three axis
of the device accelerometer every 10ms. These values are fil-
tered by the responsible module of the program. Then they
are mapped in ranges which are compatible with the weights
of the animations and finally are communicated to the main
program which updates the animation.

All this process results in a very simple but intuitive behavior:
the user is able to command the animation by simply moving
his Android device. In fact by tilting the device forward or
backward he can control the forward/backward walk and by
tilting it right or left he can control the side movements of the
character.

POSSIBLE FUTURE WORKS

This implementation is only intended to provide a basic feed-
back for the proposed method. Many works can be further
conducted on this demo in order to improve the accuracy or
to show different capabilities of it.

In order to augment the accuracy of the mapping between the
controller device and the character movements, some further
filtering can be implemented. A mobile mean on the last val-
ues acquired from the accelerometer is straightforward to be
added and can provide a really cleaner effect.

In order to show the real applications of this method, a little
video-game with some basic physics can be implemented. An
example could be a mini-game in which the player’s goal is to
make the character cross a cliff by walking on a rope. Some
animations like the fall of the character can be easily added.

CONCLUSIONS

The proposed method aims to be inserted in the Human Com-
puter Interaction field by providing Real-Time rendered 3D
scenes which the user can interact with. This approach may
result to be very useful in many various contexts like home
entertainment, education or exhibitions. Thanks to its ver-
satility it can be installed on almost every browser-enabled

platform and, by exploiting the power of common devices
like smartphones, it can be used by everyone who can install
a simple application. For specific purposes, ad-hoc hardware
controllers can be built quite easily.

Many other different scenarios may be simulations of partic-
ular situations by means of actors that interact in real-time
with the 3D scene or also the development of innovative Hu-
man Input Devices.

REFERENCES

1.

4.

Catmull E., A System for Computer Generated Movies.
University of Utah, 1972.

. Lasseter J., Principles of Traditional Animation Applied

to 3D Computer Animation. Pixar, San Rafael,
California, 1987.

. Witkin A. and Popovic Z., Motion Warping. Carnegie

Mellon University, Pittsburgh, 1995.

Popovic J., Seitz S. M., Erdmann M., Motion Sketching
for Control of Rigid-Body Simulations. Massachusetts
Institute of Technology, 2003.

. Thorne M., Burke D., van de Panne M., Motion

Doodles: An Interface for Sketching Character Motion.
University of British Columbia, 2004.

. Bruderlin A. and Calvert T. W., Goal-Directed, Dynamic

Animation of Human Walking. Simon Fraser University,
Burnaby, British Columbia, Canada, 1989.

	Introduction
	Method
	Implementation
	Object Texturing
	Skeleton Rigging
	Keyframing animation
	Walk Animation Design

	Scene programming
	Animations blending
	Mobile Controller programming

	Possible Future Works
	Conclusions
	REFERENCES

