Cloth Simulaiton
with Discrete Mass-Spring and Partical System

Giancarlo Gonzalez
University of lllinois at Chicago
ggonza20@uic.edu

1. INTRODUCTION

The goal of the project is cloth simulation. This problem
has been existing for more than 2 decades. Cloth simulation
is modeled as a partial differential equation [1].

i=M" (7‘2—5+F) (1)

In equation 1 above, x is a vector representing the geo-
metric position of a cloth, and M is the mass distribution
of it. FE is a function of x and F' includes forces like air,
contact, etc which are acting upon the cloth.

Physical models and numerical solvers are the basis of
current cloth simulation engines. There are several physical
models that have been employed for cloth animation, rang-
ing from discrete mass-spring and particle system to finite
element solutions for continuous cloth models. Our Cloth
simulation was using the disrete mass-spring and particle
system was describled in detail in this report.

Our Cloth simulation was based on Dr.Mosengaard’s [3]
implementation. Our approach of modeling cloth is dis-
cretized by a polygonal mesh. In discrete models, the mesh
topology defines, how the particles (vertices) interact and
exert forces on one another. The forces on each particle of
the cloth mesh are computed depending on its position and
velocity, and the position and velocities of a set of parti-
cles within its topological neighborhood. In a mass-spring
system, we uses a two triangler mesh to form a rectangu-
lar mesh in which the particles are connected by structural
springs to counteract tension, diagonal spring for shearing,
and interleaving springs for bending.

Cloth is permissive in allowing bending and shearing mo-
tions which determines that there is a "stiff” underlying the
differential equation of motion [4]. According to Baraff et
al., explicit integration method is not suited for solving stiff
equations as it requires lots of small steps to move the sim-
ulation forward in time. He proposed using implicit inte-
gration method to improve the performance limit inherent
in the explicit method. So in our report, we gives a detail
introducton on inmplicit integration method.

2. SIMULATION OVERVIEW

2.1 Internal Forces and Particle Movement

The most important forces in the system are the internal

Muxuan Wang
University of lllinois at Chicago

mwang30@uic.edu

cloth forces which determines much of the cloth’s charac-
teristic behavior. Stretching, shearing and bending respec-
tively. Streching or compression is caused by displacement
along warp or weft direction. Shear can be seen as displace-
ment along diagnoal direction and bend is the curvature of
cloth surface. As shown in Figure 1. Breen et al.[2] describes
as the in-plane shearing and out-of-plane bending forces in
cloth. We formulate the shear force on a per triangle basis,
and the bend force on per edge basis- between pairs of ad-
jacent triangles. The strongest internal force - stretch force
is also formulated per triangle.

=

Figure 1: Stretching, shearing and bending respec-
tively.

The cloth simulation, in our example, is the interconnec-
tions between particles by a spring force or constraint. These
particles can move around by some external forces being
acted on them. In order to affect particles with forces we
must use Newton’s second law and transform it into acceler-
ation = force/mass as shown in Figure 2 and is part of our
Particle class.

void addForce(vec3 f) {

acceleration += f/mass:;

}

Figure 2: Function to add a force to a particle

To get a position, acceleration can be integrated twice us-
ing a numerical integration. We have used the Verlet intega-
ration to solve the at this point. The verlet integaration is a
numerical method used to integrate Newton’s equations of
mothion. According to Verlet[5], it provides a good numeri-
cal stability, as well as other properties that are important in
physical systems such as time-reversibility and preservation

of the symplectic form on phase space, at no significant addi-
tional computational cost over the simple Euler method. A
simple explaination of how verlet integration works is given.
Newton’s equation of motion for conservative physical sys-
tems is (explaination from wikipedia):

Mz = F(z(t)) = —VV(Z(t)) (2)

where,

e t is time,

o Z(t) = (21(¢),...,xn(¢)) is the ensemble of the position
vector of N objects,

e V is the scalar potential function,

e I is the negative gradient of the potential giving the en-
semble of forces on the particles,

e M is the mass matrix

To discretize and numerically solve this initial value prob-
lem, a time step At > 0 is chosen and the sampling point
sequence t, = nAt considered. The task is to construct a
sequence of points &, that closely follow the points Z(¢,) on
the trajectory of the exact solution.

Euler’s method uses the forward difference approximation
to the first derivative in differential equations of order one,
Verlet Integration can be seen as using the central difference
approximation to the second derivative to the first derivative
in differential equations of order one, comparing to Euler’s
method which uses the forward difference approximation.

Aan _ zn-%—Al;zn _ In*Aztn—l
A2 At
. Tnt1 — 28n + Tn-1 —a
At? "
= A(#) 3)

To obtain the next position vector from the previous two,
we have:

Tpy1 =28, — Tn1 +a@n A, @n = A(Zn). (4)

In our simulaiton, the verlet integration is done by making
a call to the function timeStep which is shown in Figure 3.
Verlet integration simply moves our particle from one posi-
tion to the other, and the movement is scaled using a time
step because given a small time step, the movement of the
particle should also be small. Now the next time timeStep
is called the particle should keep moving in that direction
that the old one has been moved in. Damping is introduced
so that there is some loss to velocity due to air resistance.

void timeStep() {
(movable) {
vec3 temp = pos;
pos = pos + (pos—old_pos)x(float)(1.87-DAMPING) + accelerationk(float)(

TIME_STEPSIZE2);
old_pos = temp;
resetAcceleration();

Figure 3: Two integrations to the acceleration
through verlet integration.

2.2 Constraints

In this section, we describe how constraints are imposed
on individual cloth particles. The constraints we discuss
in this section are contact constraints between a solid ob-
ject and a particle. Particles thus be attached to a fixed or
moving point in space, or constrained to a fixed or moving
surface or curve. At any give time of the simulation, a cloth
particle is either completely unconstrained, or the particle
may be in contrained in one, two or there dimensions. If
the particle is completely constrained, we may just explic-
ity setting some value to the particle’s velocity. If there are
only one or two constraints, we are constraining the parti-
cles along either one or two mutually orthogonal axes.

In order to keep the particles connected in a grid and be-
having realistically we use structural, shear, and bending
constraints. These constraints are made in the constructor
of the class as seen in Figure 4. Structural constraint keeps
the particles connected in a grid. Shearing constraint helps
the particles move in parallel of each other. Bending con-
straints is to help resist the bend of the material.
pecify distance constraint using flexible spring model:

B Structural constraint
Shear constraint

B Bending constraint

Figure 4: Particle (red) constraints in the construc-
tor of the cloth class.

We speicfy distance constraint using flexible spring model.
Therefore, our partical system with contraints will be like:

{ N N m—; X. @&
y— |]

260 + + o + ® &

200 O=i=0 »

Point Structural Shear

Masses Springs Springs Springs

Bending

Figure 5: Mass-Spring system for cloth.

A lot of the information in the constraint class comes from
Hook’s spring law. Two particles are held together by hav-
ing a spring exert a force between them, a distance between
them, the resting length of the spring, the stiffness of the
spring (a constant), a damping constant (for a force of fric-
tion), and the velocity of the particles. A Mass-Spring Sys-
tem is therefore applied. The following figure 6 shows a liner
strain model of a spring motion based on Hook’s Law.

This spring force allows for simulation of how far a mate-
rial can be stretched and how it bounces back to its original
shape by the resting length of the spring. This is called a
dynamic particle simulator and it changes every time step of
the simulation. As explained above in the particles section,
we add external force and a resting distance to each particle

Figure 6: Spring motion based on Hook’s law.

to add constraint.

2.3 Dynamic behavior of the cloth

In order to have some interesting behavior for the cloth,
we have added external forces, such as a wind force, gravity,
and collision with an object. Also, controls are available,
as demonstrated in the video, to add or remove gravity, the
object colliding, and the wind force to see how they react
without or just on their own.

Figure 7: Cloth interacting with wind.

Figure 8: Cloth interacting with ball.

Gravity is an acceleration vector pointing in the downward
direction added to all particles and is added by calling the
addForce function with a vector. In our case the vec3(0.0,
0.2, 0.0) times the time step size adds it.

The object that we are showing colliding with the cloth
is a sphere. Collision is detected by checking if a particle
is within the object. By giving the position of the sphere
and its radius, this is easily checked, if a particle is found to
be inside the radius we move the particle the radius minus
the distance where it is found. We take into account the
fact that in order to avoid the ball protruding the cloth,
the radius of the ball given to the function ballCollison is a
bit bigger than the ball’s actual radius. Adding wind was
a bit more difficult. Knowing that we draw the particles
by connecting them and making up triangles with them to
draw cloth, wind is just a force acting on the normal of
these triangles and should be proportional to the angle its
coming at. We found a simple function in the tutorial by
Moosegaards that adds forces to the triangles as shown in
Figure 9.

void addWindForcesForTriangle(Particle *pl,Particle *p2,Particle *p3,
direction)
{
vec3 normal = calcTriangleNormal(pl,p2,p3);
lize(normal);

ma H
ormal * (glm::dot(d, direction));
pl->addForce(force);
p2->addForce(force);
p3->addForce(force) ;

Figure 9: Force added to a triangle defined by the
three particles given.

3. LARGE TIME STEP AND IMPLICIT IN-
TEGRATION

The bottle-neck in most cloth simulation systems is that
time steps must be small to avoid numerical instability. In
our cloth simulation system, we also uses explicite integra-
tion method to slove the equations which requires lots of
small steps to move the simulation forward in time. How-
ever, using small time step really slow down our simulation.
To make the simulation run smoother, we have to sacri-
fice the simulaiton realism by reducing the total number of
particales. In our current simulation, we only use 30 * 30
particles.

Cloth is permissive in allowing bending and shearing mo-
tions which determines that there is a "stiff” underlying the
differential equation of motion [4]. According to Baraff et
al., explicit integration method is not suited for solving stiff
equations as it requires lots of small steps to move the sim-
ulation forward in time. He proposed using implicit integra-
tion method to improve the performance limit inherent in
the explicit method. For example, given the known position
z(to) and velocity &(to) of the system at time o, the goal is
to determine a new position z(to + h) and velocity & (to + h)
at time to + h. To compute the new state and velocity using
an implicit technique, we must first transform equation 1
into a first-order differential equation. The new first-order
differential equation is:

d[x d(x v
dt(:v) - dt(v) - <M—1f(:c,v))')

To simplify notation, we will define 2o = x(to) and vy =

v(to). And also define Az = z(to + h) — z(to) and Av =
v(to + h) — v(to). The linear system is:

Az —n vo + Av (6)
Ay) T\M(fo+ SLAz+ I Av))

Taking the bottom row of equation 6 and substituting
Az = h(vo + Av) yields

Av=hM""(fo+ %h(vo + Av) + %Av). (7)

which we can solve for Av. So given Aw, we trivially com-
pute Az = h(vo + Av).

According to Baraff, by enforcing constarints on individual
cloth particles with the above impicit integration method,
the cloth simulaiton system can stably take large time steps.
He also introduced a simple treatment of damping forces.
The key issue here is, by using implicit integration method,
the solution of O(n) x O(n) sparse linear system. Their sim-
ulator enforces constraints without adding penalty terms in
energy function E or Lagrange-multiplier forces to F'. They
used a modified version of Conjugate Gradient (CG) method
to solve the linear system introduced by implicit integration.
One of the properties of their solution is the constrains are
maintained without being affected by the number of itera-
tions taken by linear solver. They also showed a method to
dynamically adapt the size of time steps over the process of
simulation.

4. CONCLUSION

Physical models and numerical solvers are the basis of
current cloth simulation engines. There are several physical
models that have been employed for cloth animation, rang-
ing from discrete mass-spring and particle system to finite
element solutions for continuous cloth models. Our Cloth
simulation was using the disrete mass-spring and particle
system was describled in detail in this report.

Our Cloth simulation was based on Dr.Mosengaard’s [3]
implementation. Our worst fears being realized, it did not
work with modern OpenGL and for obvious reason with
Aluminum. First off, a class for vector multiplication, di-
vision, normalization, etc. was defined, but the vec3 class
that glm/math has defined is much better, especially when
sending it to the shaders. We had to replace all code that
used that vector class and add the new commands that mod-
ern OpenGL has used. Also, shaders were not at all in use
by the program in the tutorial so we wrote simple ones that
added lighting to the scene. It is nothing special, just sim-
ply adds an ambient and diffuse lighting. In order to use
these shaders in Aluminum, we had to go throughout the
code adding the model, projection, and view for the cloth
creation. The ball was simple since the addSphere was pro-
vided by the library already. I would recommend adding
color to the ball but for time sake did not. I believe it is
as simple as adding color to each triangle by using the color
array in the MeshBuffer. The most difficult piece was draw-
ing the cloth. I wrote the cloth code in OpenGL instead of
using the provided Aluminum methods and it has worked so
far. By simply adding a struct called Vertex that contained

the positions, normals, and colors of the triangles we were
able to get the triangles drawn using OpenGL.

Although we found out that using explict integration meth-
ods requires small steps to move the simulation forward
in time and implict integration methods could solve this
probem, we weren’t able to implement at this time due to
time limitation. However, we gave a detailed explaination
about how the implict integration methods works in cloth
simuation.

S. REFERENCES

[1] BARAFF, D., AND WITKIN, A. Large steps in cloth
simulation. In Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive
Techniques (New York, NY, USA, 1998), SIGGRAPH
98, ACM, pp. 43-54.

[2] D.E. BREEN, D. H., AND WozNY., M. Predicting the
drape of woven cloth using interacting
particlbnbbnbbes. In Computer Graphics (Proc.
SIGGRAPH) (1994).

[3] MOSEGAARD, J. Mosegaards cloth simulation coding
tutorial.

[4] PrEss, W. H., TEUKOLSKY, S. A., VETTERLING,

W. T., AND FLANNERY, B. P. Numerical Recipes 3rd
Edition: The Art of Scientific Computing, 3 ed.
Cambridge University Press, New York, NY, USA,
2007.

[5] VERLET, L. Computer “experiments” on classical fluids.
i. thermodynamical properties of lennardal.Sjones
molecules. In Physical Review 159: 98GAS5103.
d0i:10.1103/PhysRev.159.98 (1967).

