
Non-Photorealistic Rendering with an Ant Algorithm
Massimo De Marchi

Dept. of Computer Science at UIC
900 W Taylor St, Chicago, IL 60607

mdemar5@uic.edu

Gianluca Venturini
Dept. of Computer Science at UIC

900 W Taylor St, Chicago, IL 60607
gventu4@uic.edu

ABSTRACT
Generative art is a contemporary trend that in whole or in
part uses autonomous systems to produce creative artworks.
In this field an interesting emerging technique inspired by na-
ture is Swarm Intelligence where the interaction of a group
of agents that follow simple rules lead to the emergence of
an intelligent global behavior. In this paper we are showing
a swarm art technique that produces non-photorealistic ren-
dering drawings. To design our algorithm we were inspired
by a technique called ”Photogrowth” [5] that uses a painting
algorithm inspired by ant colony approaches to create large
scale non-photorealistic renderings.

INTRODUCTION
Generative art can be obtained using three different ap-
proaches, namely ordered, disordered, or complex. Ordered
systems include the use of symmetry, tiling, numeric se-
quences and series or proportions such as the golden ratio.
Disordered systems usually exploit randomization or chaos
theories. Complex systems combine both order and disorder
and typically this lead to emergence, namely the process in
which larger entities arise through interaction of smaller en-
tities. Example of complex generative art systems employ
evolutionary algorithms, neural networks and ultimately bio-
logically inspired methods such as Swarm intelligence.
Two of the most interesting subfields of generative art are
evolutionary art and swarm art. The techniques that these
subfields employ are inspired by nature but they differ in the
way they work. In evolutionary art evolutionary algorithms
are used to pursue an aesthetic ideal by optimizing a given
fitness function. Conversely swarm art employ more unpre-
dictable techniques such as ant systems.
In this paper we are going to show an ant algorithm that
we designed, able to produce several different kind of non-
photorealistic rendering drawings. The algorithm is inspired
by a technique named Photogrowth proposed by Machado
et all [5]. Photogrowth exploits evolutionary algorithms to
evolve filters that transform an input source image. The fil-
ter is based on ants colony behaviors, namely it exploits the
trails of artificial ants to produce artistic rendering. The ge-
netic algorithm is used to evolve the ants behaviors by tuning

parameters such as ant speed and possible movement direc-
tions.

Figure 1. Example of image generated using Photogrowth evolutionary
algorithm.

RELATED WORKS
One closely related work is the one described in [3], in
which the algorithm is based on KANTS as a swarm art tool.
KANTS (Kohonen Ants) is an ant-base algorithm proposed
by [2] for data clustering and classification. The method tunes
simple parameters of an ants colony to move the system to-
ward a self organized map where global behaviors emerge.
This approach uses input data vectors as artificial ants; when
the input of the system is a photograph, the vectors represent
its RGB values. Ants communicate via the environment in a
process known as stigmergy and they are attracted by similar
ants. This process changes also the environment and is im-
plemented in the KANTS approach by adjusting the vectors
that the ants visit toward their vectors.

An interesting related work has been done by Love [4] in
which a swarm-based multi-agent system produces expres-
sive imagery using multiple digital images; In the described
system every group of agents has an aesthetic ideal repre-
sented by the input photograph. As agents moves through
the digital canvas they try to reproduce their aesthetic ideal,
and when groups with different aesthetic ideals collide a new
image is created by the convergence of the different ideals.

1



Figure 2. Example of image generated with KANTS algorithm.

Figure 3. Example of rendering generated by using multiple group of
artificial agents.

Baniasadi et all [1] presented a genetic programming algo-
rithm that evolves an input image through non-photorealistic
effects. Interestingly the fitness evaluation function that they
use is based on the Ralph’s model that describes how the hu-
man visual response is attracted by logarithmic changes in
colors; In this way the evolutionary algorithm evolves the im-
age toward human aesthetically pleasant changes of colors
according to the Ralph’s theory.

ALGORITHM OVERVIEW
As mentioned before our algorithm is inspired by a technique
called Photogrowth that models simple ants behaviors to pro-
duce non-photorealistic rendering drawings. The ant behav-
iors are modeled with several parameters and changing these
parameters allows to produce tons of different effects as we
will see in the section about experimental results.
The basic idea behind the algorithm is that a set of ants gov-
erned by certain behaviors run across the input photograph
absorbing energy and leaving their pheromone on a painting
canvas. The energy is represented by the luminance of the

Figure 4. Example of an abstract painting generated using evolutionary
programming.

pixel of the input photograph, that is the brighter the pixels is
the higher is the energy that an ant can absorb from it. The
actual amount that an ant absorb from the pixel is given by
the parameters of the species and this allows the algorithm to
draw with different level of transparency. The consumption of
energy of the living canvas is due to the fact that when an ant
absorbs energy from the pixel, that pixel is updated by sub-
tracting the absorbed amount from each RGB channel. In this
way the pixel is progressively updated toward the black color,
which represents the absence of energy. The pheromone is
represented by the ink deposited in the painting canvas, that
is the final effect is a composition of all the trails of the ants
that have moved around the canvas.
The movement of the ants is governed by their sensors and by
the distribution of energy in the input photograph. The ants
use their sensors to seek for areas with high energy, namely
the area of the photograph with the brightest pixel colors.
Sensors tells the ant the direction and the distance to which
look at, and each sensor has also a weight. Changing direc-
tion, distance and the weight of the sensor affect the way the
ant move through the living image an thus the final result of
the rendering.
The life of the ant is ruled by the amount of energy that it
has, and by its capability to acquire new energy and resist
to low energy levels. When an ant has not enough energy it
dies, and when it has too much energy it generates offspring,
namely children. Configuring these parameters is also an im-
portant task because they dramatically affect the final result.
Depending on the energy of the input image it is important
to find the correct parameters so that the ants do not die as
soon as they appear and can survive enough time to produce
something relevant.

2



In the next section we are going to describe how we imple-
mented these behaviors on GPU.

IMPLEMENTATION ON GPU
The algorithm is based on multiple elaboration of textures.
Every frame is a step of the algorithm and produce an in-
termediate result that is immediately displayed. It can be
stopped by the user at any time producing paintings at dif-
ferent level of completion.
The process uses three different textures:

• Living: initial image that the user can choose.

• Painting: final result of the computation that is displayed,
incrementally painted.

• Ant: contains the position, the direction and the energy of
the ants. Every ant is represented using one pixel, the di-
rection is encoded using the red and green channels and the
energy is encoded by the blue channel.

To obtain the maximum efficiency all the computations are
executed on the GPU, apart for the living texture which is
copied from the CPU memory at the beginning of the execu-
tion.
Every frame four scenes are rendered and the result of every
rendering is stored in one of the three textures or displayed
directly on the screen. We used this approach in order to
maintain a modular structure of the program and to overcome
the limitation imposed by the GPU rendering pipeline, that is
the fragment shader can access and change one fragment at a
time.
The scenes are:

• Ant scene: renders the new position, direction and energy
of the ants based on the luminance of the surrounding pix-
els. The inputs are the old ant texture and living texture
and the output is the new ant texture.

• Living scene: renders the new living texture. The input are
the ant texture and old living texture. The colors of the old
living texture are attenuated in this computation based on
the position of the ants and their energy. The purpose of
removing color on the living scene is to dissuade the ants
to repaint the same pixel infinite times and move to areas
not yet painted.

• Painting scene: renders the new painting texture. The input
are ant texture and painting texture. The ink is added to the
painting based on the ant position and energy: ants with
high energy deposit larger circles than ants with low en-
ergy. The transparency of the deposited ink is proportional
to the parameter depositTransp.

There are 12 parameters that describe the ant species. The
web application we developed allow the user to change them
in order to create different paintings. The movement of the
ants depends on those parameters and also on the precom-
puted sensors of the ants. Sensors are vectors that describe
a distance and a direction for picking a pixel and measuring
the luminance of it; every ant has 10 of them, but this set-
ting could be change to obtain different behavior. The final
direction of the ant is the average of all this vectors weighted

on the luminance of the corresponding pixels. The user can-
not change vector number or position because we observed
that with little variations in this vectors the algorithm become
unstable.

Parameters
In this sub section the main parameters of the algorithm are
presented.

• gain, decay: used in order to calculate the amount of en-
ergy that an ant receive and lose at every step.

• depositRate: the radius of the circle deposited on the can-
vas for every ant. Bigger values result in less detailed paint-
ing and bring to the rendering of pointillism-like paintings.

• depositTransp: the amount of ink that is deposited on the
canvas. Small values below 0.1 give semitransparent paint-
ing.

• initialEnergy: initial energy of the ant, if it is near zero ants
tends to die right after their creation, usually values around
1 are pretty good.

• deathTreshold: energy below which the ant will die.

• offspringTreshold: energy above which the ant will gener-
ate a second ant (offspring).

• vel: base speed of the ants. High speed gives less detailed
painting.

• noiseMin, noiseMax: modify the amount of randomness in
the ants movement.

Advantages
This algorithm can successfully produce a large variety of
artistic effects from an input photograph due to the fact that
the user can tune many parameters. Among the possible ef-
fects there are pointillism and oil on canvas. It is also possible
to produce a high range of different abstract effects. The user
is completely free to create her own personal art technique
and apply it to every image she desires. Since the algorithm
can be stopped at every time the user can leave a painting
partially incomplete.

Disadvantages
The main limitation of this implementation is the constraint
of the GPU. In every scene for every rendered pixel it is nec-
essary to calculate the final color that depends also on neigh-
bor pixels. This is a limitation because it requires to parse
an N×N grid to obtain the data required. This operation is
computationally expensive and for that reason we limited the
grid dimension to 13x13 pixels. A single ant can’t move more
than 5 pixels per frame and can’t paint a circle with radius that
exceeds 5 pixels.

3



(a) Input photograph (b) Painting produced using small depositRate=1 and de-
cay=0.5.

(c) Another pointillism drawing with more details due to
smaller ants and higher transparency.

(d) Painting produced using low deposit rate (deposit

Figure 5. This set of pictures shows how different effects can be created with the technique described.

EXPERIMENTAL RESULTS
The results presented in this section have been obtained by
tweaking the ant species parameters. Every presented paint-
ing is different from the others and this shows the endless
possibility that this algorithm allows. The application we de-
signed is interactive, the user can place one or more ants on
the canvas, change the species parameters, save them in order
to save effects, stop at any time the rendering and save the
final result.
The final result depends also from the starting position of
the placed ants and for this reason it is almost impossible to
produce exactly the same result more than once, even tough
similar results can be obtained. This makes every rendering
unique in a sense, and uniqueness is a property typical of art
produced by humans.
The result in figure 6 is obtained using no transparency (de-
positTransp = 1), setting an high level of initial energy for the
ants (initialEnergy = 1) and decay lower than 1. In this way
they rapidly create the colony and fill every space, but they
die when they encounter areas with low luminance due to the

decay factor smaller than one. The final effect produced is
beautiful and very abstract in that it dramatically simplifies
the face of the woman and only eyes, mouth and nose can be
recognized. The second drawing shown in figure 5(b) is pro-
duced using smaller ants (depositRate=1 that means every ant
can paint at most one pixel) and a low decay (decay=0.5 that
means ants die rapidly). As we can see lowering the size of
the trails of the ants result in a more detailed drawing. This
painting is particular because of its asymmetry. It was cre-
ated positioning only one ant in the center of the face, chang-
ing the position will change the part of the woman that will
be painted. Another particular result was obtained increasing
the dimension of the ants (depositRate=1.5) and it is shown
in figure 7. In this painting transparency is added (deposit-
Transp=0.1), and ants with low energy paint semi-transparent
smaller lines. This effect is very similar to the pointillism art
technique. The reason why all the points are concentrated
in areas with high luminance is that ants are fed with lumi-
nance (that is absorbed from the original image). The points
are proportional to the energy of the ants and to the consRate

4



parameter. In figure 5(c) the effect is similar to figure 7, but
with more details. This variation was obtained starting from
the previous result and tweaking some parameters (changing
them randomly). The drawing in figure 5(d) is the most in-
teresting one. It can emulate very well the oil on canvas art
technique. This painting is produced using a very low deposit
rate (depositRate = 0.03) in order to let the ants run more
times on the same pixels. Moreover the offspringThreshold is
very low (offspringThreshold = 0.5) and this results in a lot of
ants generated and destroyed by the low decay (decay = 0.5).

Figure 6. First drawing obtained without using transparency, the result
is an abstract painting

Figure 7. Painting produced introducing transparency (deposit-
Transp=0.1) and depositRate=1.5, it imitates pointillism art technique.

CONCLUSIONS
The algorithm that we implemented has proved to be a very
effective tool for non-photorealistic rendering. The approach
inspired by nature incorporate an intrinsic chaotic behavior
that leads to very artistic effects; nonetheless the artist can

Figure 8. A non-photorealistic rendering of Chicago obtained with our
algorithm.

Figure 9. A non-photorealistic rendering of the Cloud Gate in Chicago.

Figure 10. A non-photorealistic rendering of the portrait of a girl.

guide the algorithm to produce an endless number of differ-
ent effects by tuning the parameters that rule the ants behav-
ior. The unpredictability of the ants movements leads also to
produce unique paintings and uniqueness is a property typical
of human art.
This technique is open to several improvements, for example
a genetic algorithm can be used to pursue a certain aesthetic
ideal indicated by a human artist, or for capturing configu-
rations that are esthetically pleasant for a human being. An-
other interesting improvement could be to empower the ants
with coloured ink.
Overall the obtained result is satisfactory because the algo-
rithm is already capable of producing aesthetically pleasant
drawings and its flexibility allow countless different effects
from the same input photograph.

5



REFERENCES
1. Baniasadi, M., and Ross, B. J. Exploring

non-photorealistic rendering with genetic programming.
Genetic Programming and Evolvable Machines (2013),
1–29.

2. Fernandes, C., Mora, A. M., Merelo, J. J., Ramos, V., and
Laredo, J. L. J. Kohonants: a self-organizing ant
algorithm for clustering and pattern classification. arXiv
preprint arXiv:0803.2695 (2008).

3. Fernandes, C. M., Mora, A. M., Merelo, J. J., and Rosa,
A. C. Photorealistic rendering with an ant algorithm. In
Computational Intelligence. Springer, 2015, 63–77.

4. Love, J. Aesthetic agents: experiments in swarm painting.
PhD thesis, 2012.

5. Machado, P., and Pereira, L. Photogrowth:
Non-photorealistic renderings through ant paintings. In
Proceedings of the fourteenth international conference on
Genetic and evolutionary computation conference, ACM
(2012), 233–240.

6


	Introduction
	Related works
	Algorithm overview
	Implementation on GPU
	Parameters
	Advantages
	Disadvantages

	Experimental results
	Conclusions
	REFERENCES 

