
3D Object Morphing with Metaballs
Sindhu Kommareddy

University of Illinois at Chicago
1200 W Harrison St, Chicago,

IL 60607 USA
bkomma2@uic.edu

Jed Siripun
University of Illinois at Chicago
1200 W Harrison St, Chicago,

IL, 60607 USA
jsirip2@uic.edu

Jenny Sum
University of Illinois at Chicago
1200 W Harrison St, Chicago,

IL, 60607 USA
sum1@uic.edu

ABSTRACT

This paper goes over the 3D morphing
technique known as the Marching Cubes algorithm
used to render isosurfaces in volumetric data. In this
particular instance, this algorithm is used to morph 3D
metaballs, otherwise known as blobby objects. The
most important task for this type of morphing is to
extract a polygonal mesh, from a three-dimensional
scalar field, also known as voxels. The Marching
Cubes algorithm is mainly used for medical
visualizations such as CT and MRI scan data images.
It has also been used for special effects in motion
pictures, as well as 3D modeling with metaballs or
other objects that have metasurfaces.

Author Keywords
Marching cubes; 3D Morphing; Polygonal mesh;
Metaballs; Voxels; Isosurface

ACM Classification Keywords
D.3.2 C++

INTRODUCTION
3D computer graphics has become more

important, increasingly popular, and more commonly
used in different fields in recent years. 3D object or
model morphing is one of the special effects in 3D
computer graphics. In computer graphics terms,
morphing is defined as an animated transformation of
one image into another image. It is a special effect that
has been used in many motion pictures and
animations, where an image or shape seamlessly
transitions from one image or shape to another
through a type of warping or cross dissolving

technique. In film, cross dissolving is often used. In
this paper, we will be discussing a simple, but highly

effective and useful morphing technique, using the
Marching Cubes algorithm.

William E. Lorensen and Harvey E. Cline
developed the Marching Cubes algorithm. It was the
result of their research while they worked at General
Electric to efficiently visualize data from CT and MRI
devices.

The typical method of modeling surfaces is
using parametric equations to define points on the
surface. These points can be connected to form
polygonal meshes. This morphing technique is very
useful for performing transformations. An alternative
to parametric methods is using implicit
representations. This is when the surface is defined as
the zero contour of a function with 2 or more
variables. Implicit representations are popular to use
when it comes to blending and metamorphosis.

Metaballs are a type of implicit modeling
technique. One of the prevailing aspects of metaballs
is the way they are able to combine with one another,
resulting in a very smooth blending of spherical
objects.

Figure 1. Two metaballs with a lower threshold,

showing smooth blending when combined.

Copyright © by the Association for Computing Machinery, Inc
(ACM). Permission to make digital or hard copies of portions of
this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for prit or
commercial advantage and that copies bear this notice and full
citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting
with cred is permitted.

RELATED WORK
 The Marching Cubes algorithm has been
studied and used by many throughout the years. A
popular paper written by Paul Bourke displays how
this algorithm works, and how efficient this algorithm
runs. It is simple, but has incredible speed because it
works almost entirely on lookup tables.

 The two applications of this technique that
Paul Bourke focuses on, is the reconstruction of a
surface from medical volumetric datasets, for example
MRI scans, and creating a 3D contour of a
mathematical scalar field. In this instance, the function
is known everywhere, but they are sampled at the
vertices of a regular 3D grid.

 With the resolution of the sampling grid,
Bourke was able to do a very desirable control. It
allowed for the fine approximation to the isosurface to
be generated on the smoothness required and the
processing power available to display the surface. In
figure 7, “bobby molecules”, as Blinn calls them, are
generated at different grid sizes to create a smoother
surface.

ALGORITHM
 The algorithm takes eight neighbor locations
at a time through the scalar field. This forms an
imaginary cube. Afterward, the algorithm determines
the amount and types of polygons needed to represent
the part of the isosurface that passes through this cube.
Afterward, these individual polygons are fused into
the desired surface.

 The desired surface is formed by creating an
index to a pre-calculated array of 256 possible
polygon configurations within the cube. Each of the 8
scalar values is treated as a bit in an 8-bit integer. The
algorithm then checks to see if the scalar’s value is
higher or lower than the iso-value. If the scalar’s value
is higher than the iso-value, this means that it is inside
the surface, then the appropriate bit is set to one. If the
scalar’s value is lower han the iso-value, which means
it is outside the surface, then the appropriate bit is set
to zero. After all eight scalars are checked, the final
value is the actual index to the polygon indices array.

 In the final step of the algorithm, each vertex
of the generated polygons is placed in the appropriate
position along the cube’s edge.

Figure 2. How the marching cube algorithm behaves.

METABALLS CREATION AND INITIALIZATION
 The metaballs are organic-looking n-
dimensional objects. The rendering technique of
metaballs was invited by Jim Blinn. In this project, the
metaballs are defined as a function in 3-dimensions,
f(x,y,z).

The threshold value is chosen to define a solid
volume, and the above inequality represents whether
or not the volume enclosed by the surface defined by
n metaballs is filled at (x,y,z).

 This is the formula used for the metaballs.

(x0,y0,z0) is the center of the meatball. However, this
can be very computationally expensive, so polynomial
functions are used instead in the program.

 The program apples a simple falloff curve to
distance-from-surfaces. It uses this formula:

where r is the distance to the point. By using this
formula, expensive square root calls are avoided.

 In the program, there are five metaballs
initialized. These five metaballs are initialized using a
3D vector that approximates location, and a float
value that approximates size. In this particular
program, there is one larger metaball and four larger
metaballs that surround it.

Figure 3. One larger metaball surrounded by four equal-

sized smaller metaballs.

METABALL SIZES
 The program allows the user to change the
size of the metaball. By pressing the ‘Q’ key, the
squared radius of the original cube is expanded by a
floating point of 0.1. When the user presses the ‘A’
key, the floating point of 0.1 shrinks the squared
radius of the original cube.

 The reason why it is referred to as a cube,
originally, is because of the marching cube algorithm.
Though metaballs are of spherical shapes, the shape is
created from the ancestral cube.

METABALL COLORS
 The program allows the user to change the
color of the metaballs into three different shades:
green, magenta, and gray. The user can access these
three different shades by tapping onto the space bar.

 The colors are changed through the values in
diffuse lighting of the phong shader. These values are
passed into a function, and changed according to the
key press.

Figure 4. The metaballs change colors after the user

presses the space key.

WIREFRAMING
 The program allows the user to do wire
framing which creates a grid-like texture onto the
metaballs. This grid-like texture shows the polygon
formations on the surface of the metaballs. These
polygon formations are the same surface polygons that
are explained under the algorithms section.

 When the user presses the ‘W’ key, the
metaballs shows the wire framing. The user can toggle
this function by pressing the ‘F’ function and filling
the metaball with a smooth and glossy finish. This
finish demonstrates the three types of lighting:
ambient, diffuse, and specular lighting.

Figure 5. The wire framing of the metaballs are shown.

GRID SIZE
 Along with being able to see the metaballs in
as a wireframe, the user is able to increase or decrease
the size of the cube grid. The cube grid is the cube in
which the polygons from the wire framing live. When
the cube grid size is increased, the polygons that are
interpolated onto this cube is also increased.

 When the user presses the up arrow key, the
cube grid increases, and when the user presses the
down arrow key, the cube grid decreases.

PAUSING METABALLS
 The metaballs run on a timer function within
the program. This timer is constantly running, and
tracking the motions of the metaball. The metaballs
are in constant motion, morphing, and fusing together.

 When the user presses the ‘P’ key, the timer
function is paused, and the motions of the metaballs
come to a still. When the user presses the ‘U’ key, the
timer is unpaused, and the motions of the metaballs
are continued. By being able to toggle the program’s
timer, the user can clearly see the changes that are

made in color and size in both the metaball radius as
well as the grid.

Figure 6. The user has decreased the grid size of the

metaballs.

CONCLUSION
 The Marching Cubes algorithm is an
algorithm that is used for 3D surface construction. It is
often used for medical purposes such as MRI and CT
scans, but can be used for 3D modeling and 3D
morphing as well, as seen in the metaballs of this
program.

 Metaballs, also known as blobby objects, are
an implicit modeling technique that has an interesting
way of combining with one another to create a smooth
blending between spherical objects.

 In this program, the metaballs have the direct
flexibility of changing sizes, shapes, and textures. The
user is able to control time to better see these changes,
and within the code, the amount of metaballs can be
changed as well. The more metaballs there are, the
more limited space is, and the more collisions occur.

Figure 7: The “bobby molecules” that are generated at different grid sizes to create the appearance of a smoother surface.

ACKNOWLEDGMENTS
We would like to thank Professor Angus Forbes and
Kyle Almryde for giving us the tools and knowledge
that was necessary to complete this programming
project.

REFERENCES
1. Blinn, J. (1982). A Generalization of Algebraic

Surface Drawing. ACM Transactions on Graphics,
1(3), 235-256.

2. Hansen, C., & Johnson, C. (2004). Visualization
Handbook. 9-9.

3. Lopes, A., & Bordlie, K. (2005). Interactive
approaces to contouring and isosurfaces for

geovisualization. Exploring Geovisualizing, 352-
353.

4. Lorensen, W., & Cline, H. (1987). Marching
Cubes: A high resolution 3D surface construction
algorithm. Computer Graphics, 21(4).

5. Menon, J. (1996). An Introduction to Implicit
Techniques. SIGGRAPH Course Notes on Implicit
Surfaces for Geometric Modeling and Computer
Graphics.

6. Ward, M. (1999). An Overview of
Metaballs/Blobby Objects. Math and Physics.

7. Ward, M. (1999). Overview of Marching Cubes
Algorithm. Math and Physics.

