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ABSTRACT 
In this paper, we present a technique, which shows how 
waves once generated from a small drop continue to ripple. 
Waves interact with each other and on collision change the 
form and direction. Once the waves strike the boundary, 
they return with the same speed and in sometime, 
depending on the delay, you can see continuous ripples in 
the surface. We use shallow water equation to achieve the 
desired output. 
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INTRODUCTION 
In early years of fluid simulation, procedural surface 
generation was used to represent waves as presented by 
authors in [12], [13] and [14]. There has been a significant 
progress in field of fluid simulation over the past few years. 
The improvements can be seen particularly with respect to 
application with various scenarios such as different material 
interaction, phase change and multiphase, visual accuracy. 
[1] The main difficulty encountered faced by researchers in 
this area is the collaboration of various factors on which 
fluid simulation depends. Gravity, velocity, viscosity, 
collision, wind, direction, waves, interaction with object 
and many more of these factors contribute to real life 
simulation of liquid [10]. Incorporating all the factors to 
represent real life experience is a challenge.  

We make use of shallow water equation, which is derived 
from Naïve Stroke Equation [11]. We used two different 
applications and collaborated them together into one (Flat 
Wave plus Terrain). Shallow Water equation is a system of 
hyperbolic/Parabolic Partial Differential Equation. They 
govern water flow in oceans, coastal regions, estuaries, 

rivers and channel. As the name suggest, the main 
characteristic of shallow Water flows is that the vertical 
dimension is much smaller as compared to the horizontal 
dimension. Naïve Stroke Equation defines the motion of 
fluids and from these equations we derive SWE. 

In Next section we talk about the related works under the 
heading Literature Review. Then we will explain the 
framework and other concepts necessary to understand the 
SWE and wave equation. In the section followed by it, we 
show the results achieved using our implementation. Then 
finally we talk about conclusion and future work.  

 
LITERATURE REVIEW 
In [2] author in detail explains the Shallow water equation 
with its derivation. Since then a lot of authors has used 
SWE to present the formation of waves in water. Authors in 
[3] present the visual simulation of water using SWE. The 
simulated output involved dry-bed zones and non-trivial 
bottom topographic. These are some real challenges to 
robustness and accuracy of discretization. Authors in [1] 
present a new method, which aims to enhance the shallow 
water simulation by the effect of overturning waves.  They 
showcase a technique, which makes it possible to simulate 
scenes such as waves near a beach, and surf riding 
characters in real time. Researchers have experimented with 
not only even but also uneven surface as well. In [4], 
authors use Saint-Venant system for shallow water flows 
with non-flat bottom. The goal of the authors in [5] is to 
perform simulations that capture fluid effects from small 
drops up to the propagation of large waves. To achieve the 
desired result, the authors present a hybrid Simulation 
method, which combines 2D shallow water simulation with 
a full 3D free surface fluid simulation. The computation of 
shallow water equations in one dimensional with 
topography by Finite Volume methods is studied by the 
authors in [6]. In [7], authors have developed a simple 
scheme for treatment of vertical bed topography in shallow 
water flows. The shallow water equations including local 
energy loss terms are used to model the effect of vertical 
step on flows. SWE (non-flat bottom) have steady state 
solutions. In these the flux gradient are not zero but are 
exactly balanced by the source term. The challenge to 
design genuinely high order accurate numerical schemes in 
presented and solved by the authors in [8] which preserve 
exactly these steady state solutions. In this paper [9], a 
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moving boundary technique is developed to investigate 
wave run-up and rundown with the help of depth-integrated 
equations.  

We can see a lot of research has been done in field of fluid 
mechanics that makes use of Shallow Wave Equations 
directly or after modifying few parameters. In this paper we 
also make use of SWE and try to show how waves behave 
when they strike with each other or with boundaries.  In the 
framework we will first explain the Naïve Stroke Equation 
and then show how SWE is derived from it. We  

FRAMEWORK 
Before directly moving on to how we used the equation in 
our framework, we will explain the derivation of Shallow 
Wave Equations from Naïve Stroke Equations.  

There are four basic steps required. Firstly, derive the Naïve 
Stroke equation itself from the conservation laws. 
Secondly, get an average of Naïve Stroke Equations to 
account for the turbulent nature of ocean flow. Thirdly and 
most importantly, we specify the boundary conditions for 
NSE. Then finally integrate NSE over depth.  

Suppose we have applied the Conservation Laws and we 
receive the Naïve Stroke Equations given below. 

• Naïve Stroke Equations: 
∂u/ ∂x + ∂v/∂y + ∂w/∂z = 0 (1) 

∂(ρu)/∂t + ∂(ρu2)/∂x + ∂(ρuv)/∂y + ∂(ρuw)/∂z = 
∂(τxx-ρ)/∂x + ∂τxy/∂y + ∂τxz/∂z  (2) 

∂(ρv)/∂t + ∂(ρuv)/∂x + ∂(ρv2)/∂y + ∂(ρvw)/∂z = ∂τxy 
/∂x + ∂(τyy-ρ)/∂y + ∂τyz/∂z  (3) 

∂(ρw)/∂t + ∂(ρuw)/∂x + ∂(ρvw)/∂y + ∂(ρw2)/∂z = -
ρg + ∂τxz/∂x + ∂τyz/∂y + ∂(τzz-ρ)/∂z (4) 

where,  

ρ is the fluid density (kg/m3), 

g is acceleration due to gravity (m/s2), 

v=  ( u v w) is the fluid velocity (m/s), 

• Using Boundary Conditions: 

At the bottom (z=-b) 

o No slip u=v=0 

o No normal flow: u ∂b/ ∂x + v ∂b/ ∂y + 
w=0  (5) 

o Bottom Shear Stress:  

τbx= τxx ∂b/ ∂x + τxy ∂b/ ∂y + τxz  (6) 

Where, Τbx is specified bottom friction. 

At the free surface (z= ζ) 

o No relative Normal Flow: 

∂ζ/ ∂t + u ∂ζ/∂x + v ∂ζ/∂y - w= 0 (7) 

o ρ=0, done in (2) 

o Surface Sheer Stress:  

Τsx= -τxx ∂ζ/ ∂x - τxy ∂ζ/ ∂y + τxz (8) 

Before we integrate over depth, we can examine the 
momentum equation for vertical velocity. By a scaling 
argument, all the terms except the pressure derivative and 
the gravity term are small. Then z-momentum equation 
collapse to:  

∂p/∂z = 
ρg 

p= ρg (ζ -z) 

This is the hydrostatic pressure distribution in equation 9.  

  

We now integrate the continuity equation ∇ . V=0 from z=- 
b to z= ζ. Since both are dependent on t, x, y we use Leibniz 
Integral rule. 

 

Defining depth average velocities as 

 

We can use our BC to get rid of the boundary terms. So the 
depth average continuity equation is: 

(9) 



 

Now if we integrate the LHS of x momentum equation over 
depth 
 

 

Integrating over depth gives us 

 

Combining the depth integrated continuity equation with 
the LHS and RHS of the depth integrated x- and y- 
momentum equations, 2D SWE in conservative form are: 

 

These are the final Shallow Water Equations used in our 
code to generate the waves. 

RESULT 
As soon as you start the simulation of the code on a 
browser, Firefox or Chrome, you will see a drop of liquid 
falling into the square Figure 1. 

 
Figure 1 A Small drop of liquid when falls into the square 

pond in middle (X=0, Y=0). 

 

Just after the drop falls, it forms a wave in the square liquid 
surface as show in figure 2.  

 

Figure 2 The drop spreads and form waves. 

 

The waves after colliding with the boundary come back and 
interact with other waves Figure 3.  

 

Figure 3 The waves collide with the boundary and return 
back. 

Finally, after multiple collisions with boundary and other 
waves we get continuous waves which look like ripples 
Figure 4.  

 

Figure 4 After multiple collisions with the boundary and other 
waves. 

 

Figure 5 shows that the location of the drop can be 
modified and therefore the waves are formed accordingly. 

(10) 



 

 

Figure 5 Drop of liquid at right-top corner. 

 

CONCLUSION 
Our work is mainly focused to help beginners who are new 
to the field of fluid simulation and provide them some 
insight in some techniques, which one can use to simulate 
waves. Shallow Water Equation is known to be one of the 
very famous techniques, which can be used to visualize the 
simulation of waves in water. We try to use it and present a 
view of how water waves behave in real time within a 
confined boundary. Every one of us has at one point or 
another have seen waves and tides in oceans and how they 
collide with one another to generate new form and 
direction. We make use of wave equation but we only 
considered the interaction between water particles. We 
didn’t consider how water interacts with waterbed or sand; 
we neither considered other factors like viscosity of 
different materials and transparency of liquid. We plan on 
including more real time factors in our future project and 
present a more real time rendering of water waves. We 
would also like to show the behavior of waves when it 
comes in contact with other rigid objects like rocks.   
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