Real Time Fluid Simulation

using Smoothed-Particle Hydrodynamics and OpenGL

Computer Graphics CS 488

Matthias Untergassmair
munter2 @uic.edu

ABSTRACT

This paper explores the field of Smooth Particle Hydrody-
namics (SPH), starting at its beginnings as a tool to simulate
astrophysical phenomena and following its evolution and im-
plementation as a way to simulate fluids such as water. We
will then give a brief mathematical background and ensuing
algorithm of our SPH simulation followed by a brief explana-
tion of the code and an outlook for possible improvements.

Author Keywords
SPH, Smoothed Particle Hydrodynamics, OpenGL, Fluid
Simulation, Real Time

Download code at

https://github.com/munter2/RealTimeFluid

INTRODUCTION

Smoothed Particle Hydrodynamics (SPH) successfully
simulates fluids by breaking up a fluid body into individual
parts, or particles. These particles together form a particle
system that simulates physical properties of the system based
on various interaction forces and external forces. The gov-
erning equations for fluid movement can be deduced from the
governing Navier Stokes equations.

However, SPH wasn’t originally intended to be used in the
simulation of liquid substances, but for investigating astro-
physical phenomena.

HISTORY

Given all the different applications for Smoothed Particle
Hydrodynamics (SPH), it was first used to simulate interstel-
lar phenomena. Conceived in 1977 by Gingold and Mon-
aghan was an improvement to the Standard Finite Difference
Method, which until their breakthrough, was the method to
use to simulate astrophysical phenomena. They improved
on this method by making “use of Lagrangian description
of fluid flow which automatically focuses attention on fluid
elements” [3]. In this implementation, particles “move ac-
cording to the Newtonian equations with forces due to the
pressure gradient and other body forces: gravity, rotation and

License: Matthias Untergassmair, Michael Berg

Michael Berg
mberg4 @uic.edu

magnetic” [3].

From the Lagrangian perspective, the computational elements
are not fixed in space, but they move around as particles and
carry several physical properties with them.

The set of equations utilized in Gingold and Monaghan’s

SPH implementation is a density distribution calculated at
each point

r) = /W(r — ") p(r")dr’ (1)

where W is a so called kernel function satisfying the normal-

ization condition
/ W(r)dr =1 2)

This density distribution equation is used to calculate the
density of the particles surrounding the current particle the
equation it’s being applied to.

An example for a kernel function is the Gaussian
1 —r?
(W) exp (Tz) (3)

h=b((r?) — (r)?)*)

and b is an adjustable parameter.

[N

where h is

The gravitational potential of the particles is denoted by

¢_—G/) i)
| — /|

with G being the gravitational constant. Substituting in eq. 1
turns the equation of gravitational potential into

W(r—r")
Z ; (©)
[T
To finish the equation, starting with
V21 = —4aW (r — 1)) (7)

substituting gravitational potential for I

N u;
Vp— _GTM {_fj;/o W(u)u2du} vu; (8)
= J

https://github.com/munter2/RealTimeFluid

where
Uj =T —7T; C)]

Adding in the Gaussian Function in eq. 3 for W yields

Gaussian function gives large numbers for particles whose
smoothing lengths are close to the particle of interest, and
thus effect the calculation of a given particles properties, but
as particles get far away, and their smoothing length becomes
extremely small, although never reaches 0. This is due to in-

N 1)
GM 2 (f\? 1 [trinsic properties of the Gaussian function itself, but it is eas
o= DS () o iy L [et R :
i Jo

N ~u; \«
Jj=1

(10)

This equation is the full solution to calculating the gravita-
tional potential of all particles involved in the simulation.

The result of Gingold and Monaghan’s theory and imple-
mentation was a robust and extendable idea that could easily
made more accurate by increasing the number of particles
and by using the devices known to improve Monte Carlo in-
tegration methods” [3].

We would like to point out here the similarity of the kernel
function W to the Dirac Delta function

__Jtoo, =0
5(x).—{0’ 40

which is also constrained to satisify the normalization condi-

tion
/ o(x)dx =1

— 00

The similarity to the Gaussian function becomes apparent

when looking at the limit
1 —x2
5(1(I) = m exp {012}

SMOOTHED PARTICLE HYDRODYNAMICS OVERVIEW

Smoothed-particle hydrodynamics (SPH) method works
by dividing the fluid into a set of referred to as particles.
These particles have a spatial distance, or smoothing length,
over which their properties are “smoothed” by a kernel func-
tion, such as a Gaussian function

INE
(W> exp (hg> (11)

This means that the physical quantity of any particle can be
obtained by approximating the continuous integral 2 and sum-
ming the relevant properties of all the particles which lie
within the range of the kernel. For example, using Mon-
aghan’s popular cubic spline kernel the temperature at posi-
tion r depends on the temperatures of all the particles within
a radial distance 2h of r [5].

Sa(z) 2=% 5(2)

The contributions of each particle to a property are
weighted according to their distance from the particle of inter-
est, and their density A property for any one particle is calcu-
lated by discerning how many particles lay within smoothing
length of a given particle and what their respective proper-
ties are, and how dense that smoothing length is around the
particle of interest. Mathematically, this is governed by a ker-
nel function, like the Gaussian function given in eq. 1. This

§4cddlint for this problem by testing for extremely small val-
ues close to zero, and disregarding those particles that are far

away from the particle of interest as a result.

In general, the equation for any quantity A at any point r
is given by the equation

A(r) = ij%ww — 1yl h) (12)
j J

where m is the mass of particle j, A is the value of the quan-
tity A for particle j, r denotes the position, p is the particle’s
density and W is a kernel function, such as the Gaussian func-
tion used by Gingold and Monaghan shown in eq. 1. The
density of the particle can be computed in a variety of ways,
such as the example equation

pi=p(r;) = ij%W(lri —mil,h) =Y m;W(ri —rj,h)
J J J
(13)

Similarly, the spatial derivative of a quantity can be computed
as follows

VA(r) = ijI%VWﬂT—Tth) (14)
J

Although the size of the smoothing length can be fixed in both
space and time, this does not take advantage of the full power
of SPH. By assigning each particle its own smoothing length
and allowing it to vary with time, the resolution of a simula-
tion can be made to automatically adapt itself depending on
local conditions. For example, in a very dense region where
many particles are close together the smoothing length can be
made relatively short, yielding high spatial resolution. Con-
versely, in low-density regions where individual particles are
far apart and the resolution is low, the smoothing length can
be increasee, optimising the computation for the regions of
interest. Combined with an equation of state and an integra-
tor, SPH can simulate hydrodynamic flows efficiently [5].

Given the principles of smoothing length, calculating
properties based on the area around a particle, and increas-
ing or decreasing a property given the density of particles in
an area, we applied some of these concepts in our implemen-
tation of SPH.

THE ALGORITHM

In the following, we denote the position for the particle ¢
attime ¢ as x%, its velocity as v} and its acceleration as a}. We
omit the vector notation (x, v, a) for these quantities, since
the following equations are valid for the vectors as well as for
each component individually. Several resources point out the
algorithms to be used for applying SPH to Fluid Dynamics,
the algorithm is described particularly clearly in [2] and can
be summarized as follows:

Algorithm 1: SPH simulation

fori = 1, .+, Npariicies do
Compute the density of the ¢th particle

=2 miW (e -

Compute the pressure of the ¢th particle

pi = k(ﬂz‘ - Po)

Compute the interaction forces acting on the ith particle,
consisting of pressure forces, viscosity and gravity

, Di + Dy
f‘i’ —_ij]VW(sz_x]Hah)

jll 1)

2p;
Uy + vi
I —uz “——V W (||lz; — @5l h)
e =f+ f +g
Solve the differential equation
(Ll = V;
i 15)
Vy = —
Pi

In our implementation, we use the Velocity Verlet (or
Leap-Frog) scheme to solve the ODE 15, as suggested in [4].
The scheme looks as follows:

Algorithm 2: Single Timestep with Velocity Verlet Algo-
rithm
t— At
Data: z!, v, 2, al, At
t+At t+% AR

Result: ;77" v, > O
t+ 5t t— Az ‘.
; =, + Atfl ;
t+ 45t
oA = ot 4 At ;
t+AL _ f+Af tr At .)
a; =a;" " (z;7°", m;) from equation ?? ;

As a kernel function we used the standard kernel, the cubic
spline

L (1 3¢243¢%, for0<¢E<1
Wg(’l’,h) ::m i(2_§)3, f0r1§§<2
0 otherwise

where § := 7. It can be seen clearly that the support of this
function is 2h.
The derivative is

O Wyt)

0
= 7W3(7«) h) + oh

VW3 (7”, h) 87"

e for0 < ¢ <1

0 11 9
§W3(7’, h)lo<e<1 = I3 h (35 + 452)

) _
%WS(T, h)|o<e<1 = rhi (1 - §§2 + 3§3>
11 3,)
+hr(< 256 + (93¢
3 32 B
1-3e4 3)
11 s 9,
+<—% —4§>

Thd r

1 9
= VW?,(T, h)‘og§<1 h4 <3£ —+ 452)

(s
+ #1 (—353 — 95‘*)
i4<1+§+4§ 35)

¢+

>1

e forl <¢<?2

%WS(T, h)li<e<o = 23(2 _ 5)2 . <}1L>
_ 3 9
= *E()

0
%Ws(ﬁ h)|1<e<2 = 13(2 —)2 <+2>

3¢ 2
=%6-g
= TWy(r,W)icecs = — o (2 — O+ So(2 -)
3
= 2o

e otherwise

VWs (Tv h)‘otherwise =0

The following two code snippets show how these formulas
are implemented in our simulation:

Listing 1: Cubic Spline

// Cubic spline function
inline float W3 (float r,
float W = 0;
float xi = r/h;
if (0 <= xi && xi <= 2) {
W= (xi <172
1 — .75xxi*xi* (2+x1i)
L 25% (2-x1) * (2—x1) * (2—-x1)

float h) {

)i
}
W /= (M_PIxhxhxh);
return W;

}

Listing 2: First Derivative of Cubic Spline

// Cubic spline derivative
inline float dlw3 (float r,
float W = 0;
float xi = r/h;
1if(0 <= xi && xi <= 2) {
W= (x1 < 1 7?
1/ (hxhxh+xM_PI) * (.75/h* (—4+4*xi+9xxi
*X1-3*x1*x1*x1) + .25/rxxi*xi*xi
* (124+9%x1))
.75/h* (2-x1) * (2—-x1) * (x1i-1)

float h) {

)i
}
W /= (M_PIxhxh=xh);
return W;

}

POSSIBLE IMPROVEMENTS

Our Implementation of SPH is not yet suitable for being
used as a real time fluid rendering tool. The code would be
easily extendible to three dimensions, since the simulation al-
ready now makes use of all three space dimensions.
However, the code scales pretty badly with the number of par-
ticles: The number of particles grows exponentially with the

number of dimensions and the complexity of the algorithm
grows quadratically with the number of particles! More so-
phisticated algorithms must be applied in order to tackle this
bottleneck.

Possible improvements for our simulation include

e Introducing smart data structures that allow to reduce the
complexity when looking for nearest neighbors (for exam-
ple cell lists, spatial hashing, etc.).

e Render the Fluid in an appealing way using metaballs
[]
it+

References

1. Akenine-Moller, T., Haines, E., and Hoffman, N. Real-
time rendering 3rd edition. Natick, MA, USA: A. K.
Peters, Ltd., 2008, 1045. ISBN: 987-1-56881-424-7.

2. Erleben, K. Smoothed particle hydrodynamics - a
short introduction to principles and ideas. University
of Copenhagen, 2010:

3. R.A. Gingold, J. M. Smoothed particle hydrodynamics:
theory and application to non-spherical stars. Mon. Not.
R. Astron. Soc.”, (375-389), 1977:

4. S. Adami X. H., N. A. A generalized wall boundary
condition for smoothed particle hydrodynamics. Jour-
nal of Computational Physics, (231), 2012:

5. Smoothed-particle hydrodynamics. http : / / en .
wikipedia . org / wiki / Smoothed - particle _
hydrodynamics. Accessed: 2014-12-09.

http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics

	Introduction
	History
	Smoothed Particle Hydrodynamics Overview
	The Algorithm
	Possible Improvements

