
Vectorial drawing demystified.
The beauty of Bezier and NURBS curves in 2D and 3D space

Francesco Paduano
University of Illinois at Chicago

700 S Halsted St 2029, Chicago, IL 60607
fpadua2@uic.edu

Lorenzo Di Tucci
University of Illinois at Chicago

700 S Halsted St 2029, Chicago, IL 60607
ldituc2@uic.edu

ABSTRACT
Bezier and Nurbs curves are part of the widely underrated
technologies for vectorial graphics in 3D computer graph-
ics. Bezier curves and 2D vectorial graphics have brought
surging interest especially in scalable-free web application.
3D Bezier and Nurbs curves have only been implemented
for modelling purposes in some commercial product such as
Maya and 3Ds Max. 3D real time implementation has been
marginal so far, especially due to the computational cost that
those technologies require. In this paper we present two dif-
ferent showcases of the beauty and the elegance of these tech-
nologies, one based on Bezier Curves in the 2D space and the
second one based on Nurbs curves in the 3D space.

Author Keywords
Bezier; Nurbs; Vectorial Drawing; curves;

INTRODUCTION

Mathematical Concept
Here we presente the mathematical concepts behind Nurbs
and Bezier Curves.

Bezier
A Bezier curve is a parametric curve. In vector graphics they
are used to model smooth curves that, differently from raw
images, do not have a finite resolution. In image manipulation
programs the combinations of linked Bezier curves is called
”path”. Paths are not bound by the limits of rasterized images
and are intuitive to modify.

Bezier curves are also used in time domain, more in particu-
lar in animation and user interface design. The mathematical
support for Bezier curves is provided by Bernstein Polyno-
mial. It has been known since 1912 even tough its applica-
bility in computer graphics has been conceived half a century
later. Indeed, they have been widely publicized by a french
engineer, Pierre Bezier, in 1962. Pierre Bezier used these
curves to design automobile bodies for a french company, Re-
nault. However, the first study of these curves has not been

done by Mr. Bezier. The mathematician Paul de Casteljau,
in 1959, first developed the study of these curves using de
Casteljau’s alghoritm, a numerically stable method to evalu-
ate Bezier curves in another french automaker, Citroen.

Bezier in Computer Graphics
Bezier are used in computer graphics mainly to model smooth
curves. Thanks to their simplicity, they are easy to display
and easy to manipulate. Is possible to apply affine transfor-
mations such as translation and rotation simply by applying
the respective transform on the control points of the curve.
The most common kind of Bezier curves are the quadratic and
cubic curves. Intuitively, the computation effort increase with
the degree of the curve. Furthermore, it is possible to create
composite Bezier Curves. A composite curve is a patching of
low order Bezier curves and is used when there is the need-
ing of more complex shapes. Usually, composite curves are
commonly referred to as a ”path” in vector graphics standard,
as for example SVG, and vector graphics program as Adobe
Illustrator.

The simplest method to rasterize a Bezier is to evaluate the
curve at many closely space points and then scan convert
the prozimating sequence of line segments. The problem is
this technique don’t guarantee a perfect smoothness. This be-
cause, the points may be spaced too far apart. It could also
generate too many points where the curve is close to linear. A
solution to this problem is a method that use recursive subdi-
vision. According to this method, the points of control of the
curve are checked for ensure that the approximate line seg-
ment is within a small tolerance. If this does not happen, the
curve is subdivided in two halfs and the same procedure is
applied recursively.

Bezier Mathematical Model
A Bezier curve is always composed by a set of control points
from P0 to Pn, where n is the order of the curve (linear if 1,
2 for quadratic, 3 for cubic and so on). The first and the last
point are always the end points of the curve but in general the
intermediate control points do not lie on the curve. In this
paper we will define the most common Bezier Curves: the
cubic Bezier curve.

A cubic Bezier curve is defined in the plane (or in higher-
dimensional space) by four points: P0,P1,P2 and P3. The
curve starts from P0 and ends in P3 and uses the direction
given by point P2. Usually, the curve does not pass through
points P1 and P2 because this points are needed only to pro-
vide information regarding the direction. The distance be-



tween point P0 and P1 gives information regarding the dis-
tance traced by the curve in direction P2 before moving to
P3.

The cubic Bezier curve can be defined as a linear combination
of two quadratic Bezier curves:

B(t) = (1− t)BP0,P1,P2
(t) + tBP1,P2,P3

(t) , t ∈ [0, 1].

The explicit form of the curve is:

B(t) = (1−t)3P0+3(1−t)2tP1+3(1−t)t2P2+t3P3 , t ∈
[0, 1].

There is the possibility that, for some choices of points P1
and P2, the curve may intersect itself or contain a cuspide.

Given any 4 distinct points, is always possible to create a
Bezier curve. It is also possible to compute the control points
of the Bezier curve given the starting point, the ending one
and the points along the curve.

Nurbs
Nurbs is the acronym of Non-uniform rational basis spline.
It is a mathematical model used in computer graphics in
order to generate and represent curves and surfaces. They
are mostly used in 3D modelling and animation, computer-
aided design(CAD), manufacturing (CAM) and engineering
(CAE). Its wide use is thank to its great flexibility and
precision for handling both analytic and modeled shapes.
They can also be efficiently handled by computer programs
and allow for easy human interaction. Nurbs surfaces
are function of two parameters mapping to a surface in
3D space whose parameters are the control points. This
surfaces can represent simple geometrical shapes in a
compact form. Their success has been possible thanks
to them intuitiveness and predictability. Control points
are always connected directly to the curve (surface), and
if they are not, they act as if were connected by a rubber hand.

Nurbs mathematical model
We present in this paper only the mathematical model for a
NURBS curve, since they have been used in the latter exam-
ple.
The general formulation of a NURBS curve is

C(u) =
∑k

i=1
Ni,nwi∑k

j=1 Nj,nwj
Pi =

∑k
i=1 Ni,nwiPi∑k
i=1 Ni,nwi

Where the term Ni,n is called basis function and it is defined
recursively as follow:

Ni,n = fi,nNi,n−1 + gi+1,nNi+1,n−1

The index i present the ith control point, and n corresponds
with the degree of the basis function.
The mathematical definition of the functions fi,n and gi+1,n

is not reported in this report. Their value is strongly related
with the knot vector values.

Computational Effort
Stencil, then cover
NVIDIA Corporation presented in [1] a novel approach to
path rendering with GPU: The Stencil, then cover (StC).

After having createed a path object StC render the object in
two main steps:

• Step 1: Stencil the path object into the stencil buffer. GPU
provides fast stenciling of filled or stroked paths

• Step 2: Cover the path object and stencil test against its
coverage stenciled by the prior step. In addition, applica-
tion can configure arbitrary shading during the step and add
more details later.

In conclusion, this method supports the union of functional-
ity of all major path rendering standards with the hardware
support.

Nurbs
Nurbs curves are not a widespread model in computer graph-
ics because they are computationally expensive. In the pa-
per [2] is presented a new method to evaluate and display
trimmed Nurbs surfaces using the GPU. This kind of sur-
faces, are nowadays tassellated into triangles before being
sent directly into the graphic cars. This, because there is
not native hardware support for this kind of geometry. Pre-
viously, Nurbs display method relied on evaluate the curves
after first approximating Nurbs patches with lower degree
Bezier patches. In this paper, the authors, with their evalua-
tion method, discovered that, for interactive display of a large
number of trimmed Nurbs surfaces, the GPU-based evalua-
tion of the exact surface is a viable option.

Furthermore, this paper highlight that the Nurbs topic is a not
very considered technology. However, thanks to the evolution
of the hardware, nowadays is possible to deal which these
kind of curves.



SHOWCASE I: ARTISTIC BEZIER IN A MAGNETIC FIELD
The first showcase illustrated in this paper shows the capa-
bilities of Bezier curve in 2D drawing. This example has the
merely purpose of showing the artistic capabilities of vecto-
rial drawing in a new and original implementation.

Concept
The original idea that stand behind this example is: what
would happen if pen ink was captured by an electromagnetic
field?
Our purposes focus on developing a tool so that the artist is
able to compose an artwork. This process take place in two
steps:

• step 1: draw the electromagnetic field by placing electro-
magnetic charges and directional forces on the canvas

• step 2: spread the ink on the canvas by using the mouse of
a wacom graphic tablet

The ink released on the canvas is captured by the electromag-
netic field and it is spread on the canvas.
This novel concept has no literature precedents. The only
work that might be considered similar to our research is de-
scribed in [3]

Mathematical Background
In vector calculus, a vector field is a function which assign
to every point of the space a vector. In this implementation
every point of the canvas in mapped to an electromagnetic
force. The resulting force is calculated as the sum of the ef-
fect of all the electromagnetic objects placed in the canvas.
The electromagnetic objects designed for the purposes of the
example are of three kind:

• attractor: an attractor has a position and an intensity. The
intensity is a float positive value. An attractor applies a
force which direction is always pointed towards its position
and the magnitude is proportional to the attractor intensity
and inversely proportional to the square distance

• repulsor: a repulsor is the same of the attractor but the
force direction is the opposite

• directional force: a directional force has a position, a di-
rection and an intensity. It applies a force which direc-
tion is the assigned force direction, and the magnitude is
proportional to the attractor intensity and inversely propor-
tional to the square distance

Each drop of ink has a size, color, mass. Size and color
control the stroke and the color of the line, whereas the mass
is used to compute its velocity and acceleration.

Furthermore, the user can change the value of two parame-
ters:

• drop life: The life of a drop of ink expressed in millisec-
onds. When a drop is released on the canvas a timer start.
The ink opacity is proportional to the time left to live, and
reach 0 when time elapsed equalize the ink drop life.

• ink viscosity: The viscosity of the ink. When the field
force is computed on the single ink drop it’s considered
also a viscosity friction force contribute which follows the
relation

friction = −vdrop × inkV iscosity

where vdrop is the current velocity of the ink drop.

Implementation
The implementation has been made in Javascript and HTML5
Canvas. The HTML Canvas offer high - level tools for veto-
rial drawing and fair good performances.
When a mouse click or the pressure of a graphical tablet is
detected ink drops are generated on a canvas. The size of the
drop is proportional to the detected pressure of the pen. If a
mouse is used, it is a fixed value.
At regular intervals the acceleration, velocity and position of
the drops are updated according to the electromagnetic forces
on the canvas.

Results

Figure 1. Screenshot of the application with two forces

Figure 1 is a screenshot of the application. On the bottom
there are 4 buttons which let the user to choose between 4
different modalities. The first three modalities let the user
to add respectively a directional force, an attractor and a re-
pulsor whereas the fourth modality lets the user to paint the
canvas.
On the left is is possible to show or hide the symbolic repre-
sentation of the electromagentic field and to choose the color
of the ink from a predefined color palette.
Figure 1 shows a simple case of how the ink placed on the
canvas is affected by the electromagnetic field.
By changing the value of drop life and viscosity the artist can
realize quite different effects. Figure 2 illustrates the differ-
ent results for two different parameters configuration. Both
drawings are made with the same vectorial field. The blue
drawing on the left has been made with a drop life equals to
12000 and a viscosity factor equals to 0.5. The red drawing on
the right presents the following parameters: drop life = 2000
and viscosity = 0.0. A low viscosity value let the ink to aquire



Figure 2. Two different value for viscosity and drop life on the same
vectorial field. On the left drop life = 12000 and viscosity = 0.5. On the
right drop life = 2000 and viscosity = 0.0

Figure 3. Screenshot of a more complex field

a high acceleration and to squirt on the canvas without pro-
nunced changes of direction. An high value of viscosity slow
down the ink drops and make them follow more accurately
the forces of the vectorial field.
Figure 3 reports a more complex example of vectorial field.
The electromagnetic objects placed on the canvas are of two
kinds. The arrows are directional forces, attractor and repul-
sor are represented by circles.
Figure 4 is a more artistic realization which makes use of the
vectorial field of Figure 1 underneath.

Figure 4. Screenshot of a more artistic result



Figure 5. Screenshot of two flowers



SHOWCASE II: PAINTING NURBS ON A MESH
In this second showcase we want to present a quite spec-
tacular effect obtained by intensively using raytracing and
NURBS curve in a 3D scene.

Concept
The scene is composed by one single invisible mesh, in this
case an human head.
The basic concept is to trace a bundle of curves on the mesh.
The curves flows on the mesh surface and delineate the shape
of the object. The lines are not casted inside the mesh but
are projected in a way that border on the object. In this way,
we have as effect that the line are drawing the borders of the
object. The mesh is actually made visible by the curves that
follow its layout.
This method is not constrained to a single geometry. It is
indeed possible to draw every kind of object. Obviously, the
quality of the drawing increases as the number of lines drawn
increases. Therefore, if lots of lines are used there would be
the possibility to see more peculiarities of the object, but the
computational effort required will be higher.

Method

Figure 6. Schematic View - Nurbs

In this section we present the method used to achieve the de-
scribed effect.
In the first place the mesh is loaded by the program and stored
in memory. Then, n Ray Generator splines are generated
around the mesh. A Ray Generator spline is a NURBS curve
which twists around the object at a fixed distance from the
vertical axis of the object.
Each Ray Generator spline is then subdivided in m equal seg-
ments. A ray is projected from each vertex of each segment
toward the vertical axis of the mesh. If the ray intersect the
mesh a NURBS Control Point is generated. The set of NURBS

Control Point generated from each Ray Generator spline are
the control points of the painted NURBS.
A painted NURBS is a NURBS curve that is rendered on the
screen which strokes the shape of the loaded mesh.
The execution of the program is divided in time intervals
of variables length. At the beginning of each time interval
a number s of painted NURBS is generated. The painted
NURBS change its opacity procedurally in order to obtain the
effect like it was ’flowing’ along the mesh.
The computationally - expensive part of the software is due
to the huge number of raycast operation performed, which is
n∗m. At the start-up of the application the user can customize
the following parameters:

• number of control lines: the number n of Ray Generator
splines used. Lower is the number, more detail of the mesh
bight be lost.

• rays for line: number m of segments the Ray Generator
splines is subdivided in. That is the number of raycast com-
puted for each Ray Generator splines

• curling: how many times every Ray Generator splines
twists around the vertical axis of the mesh. A curling index
equals to zero means that all the Ray Generator splines are
perfectly vertical lines

• curling randomness: a randomness factor added to the
curling index

• line speed: speed of the flow of the painted NURBS

• line life: the time that takes every painted NURBS to dis-
appear

• lines spawn: how many painted NURBS are generated ev-
ery time interval

Implementation
The application has been implemented with Three.js1, a pop-
ular and powerful Javascript library for WebGL.
Our implementation relies on Three.js mainly for the helper
functions for loading an external obj file and for the raycast-
ing operations.
The utility used for rendering the NURBS curve is built in
in the Three.js engine. It relies on a standard implementation
which tesselate and pass a triangulated geometry to the vertex
shader.

Results
In this section we present some screenshots of our program
obtained with different configurations.
For each tested configuration we presents two screenshot.
One is taken after ten seconds from the start of the appli-
cation when the lines are still partially drawn. The second
screenshot is taken after 20 seconds when the lines has
reached a stable density.
The following table reports the parameters values for config-
uration 1

1http://threejs.org/



Parameter Value
number of control lines 700.0

rays for line 40
curling 3

curling randomness 1
line speed 2.0
line life 4.0

line spawn 5

Figure7 shows the effect obtained after 10 seconds of
execution. Note how skewed the lines are. This effect is
obtained by setting the curling parameter to 3 and the curling
randomness to 1. Figure8 depicts the scene after 20 seconds.
Note that the geometry is not completely filled up with lines.
This is mostly due to the relatively low line life and low value
of line spawn.

The following table reports the parameters values for config-
uration 2

Parameter Value
number of control lines 1500.0

rays for line 50
curling 0

curling randomness 0
line speed 0.5
line life 12.0

line spawn 12

Figure9 and Figure10 shows respectively the effect obtained
after 10 and 20 seconds of execution. The lines all parallels to
each other are obtained by setting both the curling and curl-
ing randomness set to 0.
The geometry is almost completely wrapped by lines. This ef-
fect is realized by setting a relatively high value of line spawn
and line life.

Figure 7. Configuration 1 after 10 seconds



Figure 8. Configuration 1 after 20 seconds

Figure 9. Configuration 2 after 10 seconds

Figure 10. Configuration 2 after 20 seconds



CONCLUSION
The use of Bezier curves to draw objects and artistic features
is not new practice. The literature is full of examples that cre-
ates a very interesting effect.
On the contrary, we believe that the use of Nurbs curves to
create artisisc effect in 3D computer graphics haven’t been
explored enough. Our work demonstrate that the effects that
can be obtained with the pure use of these technologies are
very neat and spectacular.
All this effects can be executed real-time nowadays thanks
to the surging evolution of the hardware. The developments
made in processors and GPUs allows the extensive use of this
techniques that in the past were prohibitiive due to the high
computational effort.
The showcases that have been presented in this paper show
an intensive use of vectorial primitives to accomplish the task
given. The environment in which these primitives are exe-
cuted is the web. This has been done because, nowadays, the

web is the instrument to which all the new technologies are
moving to. His accessibility and popularity are the keys point
of its success.

REFERENCES
1. Mark J. Kilgard, Jeff Bolz - NVIDIA Corporation (2011)

GPU-accelerated Path Rendering. ACM, (2012).

2. Adarsh Krishnamurthy, Rahul Khardekar, Sara McMains,
- University of California, Berkeley (2011), Direct
evaluation of NURBS curves and surfaces on the GPU.
Proceeding SPM ’07 Proceedings of the 2007 ACM
symposium on Solid and physical modeling Pages
329-334.

3. D. A. Schroeder, D. Coffey, and D. F. Keefe (2010),
Drawing with the Flow: A Sketch-Based Interface for
Illustrative Visualization of 2D Vector Fields


	Introduction
	Mathematical Concept
	Bezier
	Bezier in Computer Graphics
	Bezier Mathematical Model
	Nurbs
	Nurbs mathematical model 

	Computational Effort
	Stencil, then cover
	Nurbs


	SHOWCASE I: Artistic Bezier in a Magnetic Field
	Concept
	Mathematical Background
	Implementation
	Results

	SHOWCASE II: Painting Nurbs on a Mesh
	Concept
	Method
	Implementation
	Results

	Conclusion
	REFERENCES 

