Computer Graphics:
An Introduction

By Michael Berg

I. Introduction

Particle systems are used in all forms of media as a powerful tool to replicate
real world phenomena (see figure), or create an effect that otherwise doesn’t occur
in our natural world (see figure II). In a way, particle systems are powerful tools to
capture the imagination and entrance the mind, with its random shape and infinite
variation, and it should be that computers could generate something so beautiful,
and creates an interesting intersection between opposites, logic and art. But this
powerful tool was born out of purpose, as a solution to a problem, and grew into a
solid core of concepts with many variations and is a widely explored research area,

both visual and optimization capacities.

Figure I - Replicating real world phenomena with Particle Systems

Figure II - Simulated phenomena that don’t occur in our natural world

IL. Particle System Terminology
As the name implies, “[a] particle system is a collection of a number of

individual elements or particles” (Video Games Technologies 5). But what exactly is
a particle, or rather what can it be? A particle in its simplest form is merely a single
pixel on the screen, but a particle can also be a line or even a polygon (see figure III).
Each particle has several attributes that control its characteristics:

- position

- velocity

- life span

- size

- color

- owner

- weight, acceleration, etc

The position data member stores the X, y and z coordinates of a given particle.
Velocity is the speed with which the particle is moving. Life span is the amount of
time the particle stays a part of the particle system before being deleted from the

particle system. Size gives the particle its volume and subsequently how much

screen space it takes up. Color is the color the particle has and what Red, Green, Blue

value it is given on the screen. Owner is an identifier that tells which particle system
a given particle belongs to if multiple particle systems exist within a given scene.
There are other such attributes that can be added to particles, such as weight and
acceleration to simulate physics and gravity. Particles can also be textured, to make
simple points or polygons resemble a particular effect or phenomena, such as smoke
(see figure I).
Particle systems can control many aspects of the particles it is made up of,

and the systems themselves have many attributes:

- Particle List

- Postion

- Emission Rate

- Forces

- Current State

- Color delta, weight delta, etc

The particle list is the collection of particles generated by a single particle
system. The position is the position of the emitter, the point where particles are
created. Emission rate is the rate at which new particles are created into the scene.
Forces are any specific velocity or acceleration that should be applied to any
particles generated by the particle system. Current state is a variable that
determines if the particle system is emitting particles or not. Other attributes can be
characteristics that change the characteristics of the particles created over time, for
example changing color, weight or acceleration over time. It merits mentioning that
some of the attributes of a particle system can be inherited by the particles it

generates, but others, such as emitter position and emission rate, cannot be

inherited by particles.

One of the most notable characteristics of particle systems is their ability to
be unique each and every time they are generated through the use of various
randomizing functions. If these randomizing functions are implemented for a
particle system, the result is “[a] particle system [that] is not deterministic, its shape
and form not completely specified” (Video Games Technology 5). This is one of the
main advantages of using a particle system, to use one asset that is infinitely varied,

to give the viewer a new and fresh experience, in the case of a simulation or video

game.

Figure III - Point, Polygon and Line Particle Systems
I11. History
Necessity is the mother of invention, so the saying goes, and particle systems
were initially conceived to fill a gap in computer graphics that didn’t have a set or
widely accepted way of modeling a class of fuzzy objects. A programmer by the
name William Reeves came up with the idea while working on the special effects for
the movie Star Trek: the Wrath of Khan.
“The sequence depicts the transformation of a dead, moonlike planet into a
warm, earthlike planet by an experimental device called the Genesis bomb. In
a computer-simulated demonstration, the bomb hits the planet’s surface and
an expanding wall of fire spreads out from the point of impact to eventually
‘cleanse’ the entire planet...The wall-of-fire element in the Genesis Demo was
generated using a two-level h9ierarchy of particle systems. The top-level
system was centered at the impact point of the genesis bomb. It generated

particles which were themselves particle systems” (Reeves 365).

point

Figure IV - Diagram of Genesis Bomb Particle System

Reeves goes to explain that the first level particle system has a set of
attributes that its child particle systems inherit. For instance, each ring of fire is a
bunch of particle systems that belongs to the particle system at the point of impact.
Each particle system also has a distance from the point of impact particle system
that is passed to its child particle systems to determine how many particles that
should be generated. The child particle systems were all random,

[their] average color and the rates at which the colors changed were

inherited from the parent particle system, but varied stochastically. The

initial mean velocity, generation circle radius, ejection angle, mean particle

size, mean lifetime, mean particle generation rate, and mean particle

transparency parameters were also based on their partner’s parameters, but

varied stochastically. Varying the mean velocity parameter caused the

explosions to be of different heights”(Reeves 366).

And the color of the particles varied depending on the particle’s distance from the
emitter. “When many particles covered a pixel, as was the case near the center and
base of each explosion, the red component was quickly clamped at full intensity and
the green component increased to a point where the resulting color was orange and
even yellow. Thus, the heart of the explosion had a hot yellow-orange glow which
faded off to shades of red elsewhere” (Reeves 367). The end product of Reeves’
work is awe inspiring to say the least (see Figure V), and started a new trend in
computer graphics that is heavily used today, and considered a cornerstone of

effects rendering.

Figure Va - Genesis bomb’s initial impact point

Figure Vb - Rings expanding from the impact point

Figure Vc - Coloring of the explosion particle systems
IV. Technical Specifications (Simulation and Rendering)

Particle system implementation can vary widely given all the different
parameters that can be set both for the system and the individual particles. But
every implementation breaks down into two phases: the simulation stage and the
rendering stage.

At the beginning of the simulation stage, a “number of new particles that
must be created is calculated based on spawning rates and the interval between
updates, and each of them is spawned in a specific position in 3D space based on the
emitter’s position and spawning area specified. Each of the particle’s parameters
(i.e. velocity, color, etc.) is initialized according to the emitter’s parameters”
(Wikipedia). Typical implementations for spawning rates would be a parameter that
tells the max number of particles a system can have at anyone time and how many
can be spawned at each update. This simple implementation makes sure the particle
system doesn’t get too big or unexpectedly slow down the platform that is rendering
it. The particle system’s emitter usually sits at the same position as the coordinates

of the particle system, as a nonvisible point on the screen most times.

10

At each update, all existing particles are checked to see if they have exceeded

their lifetime, in which case they are removed from the simulation.

Otherwise, the particles’ position and other characteristics are advanced

based on a physical simulation, which can be as simple as translating their

current position, or as complicated as performing physically accurate

trajectory calculations which take into account external forces (Wikipedia)
Particles stored in a particle system are typically stored as a doubly linked list data
structure, so it is easy to traverse the list to check if a particle has expired, update a
parameter, etc.

After the simulation stage is the rendering stage, where “each particle is
rendered, usually in the form of a textured billboarded quad...However, that is not
necessary; a particle may be rendered as single pixel in small resolution/limited
processing power environments” (Wikipedia). A textured, billboarded quad is a 2d
shape with 4 sides, rotated to face the camera and textured to appear as something
else (such as smoke or fire). But there are even more, high power solutions such as
“3D mesh objects [which] can ‘stand in’ for the particles-a snowstorm might consist
of a single 3d snowflake mesh being duplicated and rotated to match the positions
of thousands or millions of particles” (Wikipedia). This stage can be the most costly
part of an entire particle system in terms of computing power, especially for
particles that are meshes with many vertices and/or textured with high-resolution
textures. Great care must be taken with how particle systems are implemented
when complicated particles are involved.

V. Current Challenges and Research

11

As the capabilities of computer hardware grow, so does the demand for more
detailed visual effects for video games and movies, and more detailed simulations
for research and development of innumerable projects. Thus, particle systems with
particle numbers ranging in the hundreds of thousands are required to meet this
demand, but optimizing particle systems with so many members has been a
challenge faced by researchers today, and has been tackled by the researchers at
Shanghai University. They have approached the problem of optimizing large-scale
particle systems with “optional integration algorithms based on CUDA (Compute
Unified Device Architecture) for both graphic and scientific simulation” (Li 572).

This optimizing and speedup of calculation time is packaged into an “API
library for particle systems [that] has backends that support both CPU and GPU (via
CUDA) as execution engines” (Li 572). This library assumes a similar particle system
described in Technical Specifications (section IV), and uses the capabilities of the
CUDA language to distribute the spawning, updating, despawning and all relevant
calculations between the CPU and the GPU. This method of distribution can be
further optimized by using “optional different integration algorithms in updating
particle attributes. According to the need for accuracy and stability in the
application” (Li 574). CUDA truly brings out the computing power of a NVIDIA GPU
when [t comes to the amount of calculations and memory needed to simulate large
scale particle systems by parallelizing many of these simple calculations on particles
to rapidly increase performance by splitting particles into particle groups, “which
[are] a set of particles that are acted upon by the same forces. Several particle

groups may exist at the same time, but all API functions are only applied to the

12

active particle group. Action are the functions in the API that modify the attributes
of particles in the active particle group” (Li 573).

[t turns out that the research group at Shanghai University found success
with optimizing and parallelizing calculations for large-scale particle systems,
reporting up to “27 times speedup over CPU (taking into account all host and GPU
data transfers), and reach the goal of simulating a real-time million-particle system
in conditions of using Euler or Verlet integration” (Li 576). This breakthrough will
tremendously help researchers and developers in the future when simulating large

scale celestial phenomena, data visualization and visual effects.

Figure VI - Million Particle System Demos using

VI. Implementation

I've utilized the Cinder libraries for C++ to implement my particle system.
Cinder abstracts away the lower level functionality of openGL into various function
calls, so as to focus on overall visual aesthetic of the program. This library is open

source and the code can be free edited to fit specific needs.

13

With Cinder, I've implemented a simple particle system simulating

randomized particles that are instantiated with various variables (see figure VII)

that affect the particle’s place on the screen, its appearance and time on the screen

before it disappears

class Particle {
public:

};

Particle(Vec2f aPosition)

: mPosition(aPosition), mlLastPosition(aPosition), mVelocity(Vec2f(@.e, 10.0)),
mAcceleration(Vec2f(0.0, -1.5)), mColor(Color(@.e, @.3, @.75)), ttl (10)

{}

Vec2f mPosition, mVelocity, mLastPosition, mAcceleration;
Color mColor;
int ttl;// time to live, decremented at every frame

Figure VII - Implementation of Particle

This class is instantiated numerous times to create the various on screen elements

that comprise the particle system. The particle system data members are used to

store particle information in a doubly linked list, and various integers for things like

how many particles start in the system on instantiation, to other things like if a

particle’s acceleration is applied to its velocity during the update method of the

particle system (see figure VIII).

class ParticleSystemExampleApp : public AppNative {

};

public:
void mouseDown(MouseEvent event);
void keyDown (KeyEvent event);
void setup();
void update();
void draw();

// particle system data members

list<Particle> mParticles;

static const int NUM_INITIAL_PARTICLES = 190;

int ACC_FLAG = @;// implement acceleration change on particle velocity
int DRAW_FLAG = 0;// @ - point, 1 - line, 2 - sphere

Vec2f EMITTER_POS = Vec2f(300.0, 50.0);

Figure VIII - Implementation of Particle System

14

The program starts with the setup method being called, which pushes back a
number of particles to the particle system equal to NUM_INITIAL_PARTICLES
(which in this case equals 10) at a random position on the screen. From there, the
program starts running, and the update and draw methods are called every frame
refresh.

The update method serves 4 main purposes in relation to updating particles
(see figure IX). First, decrement the particles’ Time to Live (ttl), or how long before
the particle is removed from the system, and removes any particles from the system
who'’s ttl has reached 0. Next, all the remaining Particle’s last position
(mLastPosition) are updated to its current position (mPosition). Then, each
particle’s velocity (mVelocity) is incremented by the particle’s acceleration
(mAcceleration) if the ACC_FLAG is 1, or mVelocity is unaffected if ACC_FLAG is 0,
and is then added to mPosition. Lastly, a new particle is pushed back to the system

at a random position in the window.

15

void ParticleSystemExampleApp::update()

// decrement ttl

for (list<Particle>::iterator partIt = mParticles.begin(); partIt != mParticles.end(); ++
partIt) {
partIt->ttl -= 1;

// put any dying particles out of their misery
if (partIt->ttl <= @) {
mParticles.erase(partIt);

}// end if

}// end for

// make mLastPosition the position of last frame

for(list<Particle>::iterator partIt = mParticles.begin(); partIt != mParticles.end(); ++
partIt)

partIt->mLastPosition = partIt->mPosition;

// speed calculations
if (ACC_FLAG == 0) {
for(list<Particle>::iterator partIt = mParticles.begin(); partIt != mParticles.end(); +
+partlt)
partIt->mPosition += partIt->mVelocity;
} else {// ACC_FLAG == 1
for(list<Particle>::iterator partIt = mParticles.begin(); partIt != mParticles.end(); +
+partIt) {
partIt->mVelocity += partIt->mAcceleration;
partIt->mPosition += partIt->mVelocity;

}

// add single particle to system at random position
mParticles.push_back(Particle(Vec2f(Rand::randFloat(getWindowWidth()), Rand::randFloat(
getWindowHeight()))));
}// end update

Figure IX - Particle System Update Method
After the Update method finishes executing, the draw method is called. The
draw method iterates through the doubly linked list, and draws the particles a
certain way according to the DRAW_FLAG: O for points, 1 for lines, 2 for spheres, and
starts at 0. This is to demonstrate that particles can be any sort of geometry, from

the simple to the increasingly complex (see figure X).

16

void ParticleSystemExampleApp::draw()

// clear screen
gl::clear(Color(@.1f, 0.1f, 0.1f));

// draw particles according to DRAW_FLAG
if (DRAW_FLAG ==
glBegin(GL_POINTS);
for(list<Particle>::iterator partIt = mParticles.begin(); partIt != mParticles.end(); ++
partIt) {
glColor3f(Color(1.0, 1.0, 1.8));
glVertex2f(partIt->mPosition);
}// end for
glEnd();

} else if (DRAW_FLAG == 1) {
glBegin(GL_LINES);
for(list<Particle>::iterator partIt = mParticles.begin(); partIt != mParticles.end(); ++
partIt) {
glColor3f(partIt->mColor);
glVertex2f(partIt-smLastPosition);
glVertex2f(partIt->mPosition);

}// end for
glEnd();
} else if (DRAW_FLAG == 2) {
for(list<Particle>::iterator partIt = mParticles.begin(); partIt != mParticles.end(); ++
partIt) {

glColor3f(Color(Rand::randFloat(1.8), Rand::randFloat(1.8), Rand::randFloat(1.0)))
gl::drawSphere(Vec3f(partIt->mPosition.x, partIt->mPosition.y, 0.8), 5.0);
}// end for

Y/ lnd draw
Figure X - Particle System Draw Method
The particle system also has a helper method for handling key events called
keyDown, that cycles through values for ACC_FLAG and DRAW_FLAG. Pressing the
‘a’ key will cycle through the values 0 and 1 for ACC_FLAG, to implement decaying
velocity on the particles, and 0, 1 and 2 for DRAW_FLAG, to draw the particles as

dots, lines or spheres (see figure XI).

void ParticleSystemExampleApp::keyDown(KeyEvent event)
{
// implement decay in velocity due to acceleration
if (event.getChar() == 'a' && ACC_FLAG == 0) {
ACC_FLAG = 1;
} else if (event.getChar() == 'a' && ACC_FLAG == 1) {
ACC_FLAG = ©0;

if (event.getChar() == 'd' && DRAW_FLAG == @)
DRAW_FLAG = 1;

else if (event.getChar() == *d' && DRAW_FLAG == 1)
DRAW_FLAG = 2;

else if (event.getChar() == *‘d' && DRAW_FLAG == 2)

DRAW_FLAG = 0;
}// end keyDown

Figure XI - Particle System keyDown Method

17

This small-scale implementation of a Particle System highlights the
versatility and customizability of particle systems, showing velocity decay due to
acceleration, the instantiation and destruction of particles and the variety of ways
particles can be drawn. Figure XII shows a few screen captures of a demo,
highlighting the random placement of particles, the different ways they are drawn,

and the ensuing recognizable visual patterns they make.

Figure Xlla - Particles as dots simulating a snowing effect

Figure XIIb - Particles as lines simulating a raining effect

18

Figure XIIc - Particles as spheres

VII. Conclusion

Throughout this paper, the idea of particle systems has been thoroughly
explored, from its beginning as a movie effect, to the core concepts behind particle
systems, a solution to the growing performance issues with using particle systems
for video games and other visual media, and a simple implementation to reinforce
the core concepts explained. Particle systems an important and versatile aspect of
computer graphics that enables a whole new world of study and implementation

that will continue to grow as the field of computer graphics grows.

19

VIII. Bibliography

Reeves, William. "Particle Systems - Technique for Modeling a Class of Fuzzy
Objects."ACM Transactions on Graphics 2.2 (1983): 359-76. Print.

Li, Xiangfei, Xuzhi Wang, Wanggen Wan, Xiaoqiang Zhu, and Xiaoqgiang Yu. "Parallel
Simulation of Large-Scale Universal Particle Systems Using CUDA." 2013 IEEE
11th International Conference on Dependable, Autonomic and Secure
Computing (2013): 572-77. Print.

Video Game Technologies 6931: MSc in Computer Science and Engineering. 1 - 20.

Print.

