

Angus Forbes

CS488

Brian Herman

Walter Dworak

November 8, 2014

Order Independent Transparency

bherma3 wdworak2 CS488 1

http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA

Outline
1. Abstract

1.1. What is order Independent Transparency
1.2. Domains
1.3. Relevance?

2. The Blending Problem
2.1. Traditional Alpha Blending
2.2. Non-Commutative Alpha Blending with Transparency
2.3. Multiplicative Blending
2.4. Additive Blending

3. Explanations of Previous Sorting Methods
3.1. Face Sorting
3.2. Trianangle Sort
3.3. Depth Peeling

4. Problems not solved by previous methods(brian)
5. OIT Methods Overview

5.1. General Form
5.1.1. Meshkin Method

bherma3 wdworak2 CS488 2

http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA

1. Abstract: What is Order Independent Transparency?
1.1. Order Independent Transparency, or OIT, describes techniques to quickly

and correctly render one or multiple semi-transparent objects. These are
in respect to the arrangement of overlapping faces. All these steps are
done using the fragment shader. Previous methods used to solved this
problem are subject to slowness or inaccuracy. These problems show up
in complex models. Incorrect depth blending and incorrect rendering of
curved geometry are common problems when using these old methods.

1.2. These objects are often used in photo realistic video games. These
games have objects like glass, smoke, and hair. Engineers often use
semi-transparent objects for Computer Aided Design(CAD) and
visualizations. For example, the car you have seen on the front cover of
this report. These visualizations commonly are used to show the
interaction and orientation. The cooperation of multiple parts that would
otherwise be impossible.

1.3. The ability to create these visualizations in the way described in this
paper. Is the advent of exciting and recent changes and development in
graphics hardware and software. The inclusion of more and larger
buffers, as well as multi-render targets. Which are the primary hardware
features allowing for this ability. Previous methods had to work in the
lower resource footprint on the GPU because of the lack of these
feautures. Thus this is a source of much of their drawbacks.

2. Alpha Blending Problem
2.1. Basic blending follows this basic equation. This equation determinines

the resulting color of two RGB vectors. The mathematically commutative
function. Takes in an alpha value and RGB vector from a source
locations. Then, does an additive blend based on the destination RGB
vector multiplied by one minus the source alpha. Then it is added to the
product of the source alpha and source RGB vector. This, however, is
order dependant and assumes sorted faces. The OpenGL reference
makes not that the standard function for this form of blending is only
effective on transparent objects when dealing with sorted, farthest to
nearest, primitives. ???

2.2. Since we are order dependant the obvious solution is to modify the
equation. To product the correct colors. As seen, the function is now

computed with a subtraction operation. Thus, breaking the commutative
property. Since order matters some sorting method and is needed

bherma3 wdworak2 CS488 3

http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA

2.3. Other functions are needed so it isn’t tightly linked to fragment ordering.
Plus being commutative.

2.4. Multiplicative Blending attempts to create a better approximation of
translucency. This is done using a multiplication between two RBG

vectors. The glBlendFunc function is called and passed two arguments.
The first is GL_ZERO and the second is the source color. All opaque
geometry is rendered first with depth testing. And the subsequent tests
are kept for rendering the translucent objects. This mimics the attenuation
effect produced by light. That light passing through the object with a
decent degree of accuracy. However, since this method attenuates
whatever color is behind the current one. An incorrect output is easily
possible. Despite this allowing the translucent objects to be rendered in
any order. The example below requires the window to be cleared to white
to produce this effect. And blending with a more complicated
background becomes complicated quickly.

2.5. Additive blending works in the opposite order. Instead of removing color

from the current frame buffer. Based on the multiplication by a new color

bherma3 wdworak2 CS488 4

http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA

(attenuation), we will be adding the output of the shader to what is
already in the frame buffer. This method is commonly used on particle
effects and in this context the particle is adding its “energy” to the
rendered scene. Below is an example using the same object. This is
worth noting that like the previous method using a sync to a white
background. This method is using a sync to black on the background
since white color cannot be added to in this way and produce a visible
object in the view. Its should also be noted that in the example below.
The obscured faces of the semi-transparent model look washed out in

comparison to the previous example and is the reason this method is
used on energy producing objects primarily.

3. Limitations of OIT
3.1. If you have a scene with a large depth range. And it contains large

clusters of different-colored transparent objects. And you are in a single
rendering pass. In this situation you need to choose a depth weight
function that will tell the difference between a cluster and clusters. Also
Porter and Duff assume that partially covered locations are not
“correlated”. OIT assumes that there are similar colors for surfaces and

bherma3 wdworak2 CS488 5

http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA

distributed in a uniform way. Also OIT puts color precision second to
accuracy. Accuracy is the most important thing in OIT.vi

4. Previous Methods that were used are face sorting, triangle sorting, and
depth peeling. Face Sorting involved sorting every face of an object with respect
to the transparency of the object. This involves sorting every face which is very
processor intensive which is not feasible with reasonably large objects. Triangle
Sorting is like face sorting but instead of using faces it uses triangles. The idea is
very similar and has the same problems. Depth Peeling uses two z-buffers to
render the object. It “peels” through the z depth. It is only useful if it is done
multiple times. It creates a series of images which are like the layers of an object
and it is all blended together to form a scene. All of the previous solutions were
not accurate enough, created a large burden on the pipeline, needed the CPU
for preprocessing, and view orientation dependant. Accuracy is very important
for computer aided design because if a part is not modeled correctly the whole
design could fail. Using the cpu for graphics processing will produce a
significant loading time for anyone using the application. Finally, being view
orientation dependant means that the camera is static. There are no camera
transformations. In other words it is linearly dependant on the view matrix. All of
these methods are use the CPU none of them use the fragment shader because
of the way they are developed.

5. The OIT Methods
5.1. The high level overview of how OIT is implemented. The first step is to

build an A-Buffer structure using the number of fragments per pixel. This
generally takes the form on a linked-list where each node contains the
RGB data, alpha, depth value, of each fragment and an index buffer
containing the total number of fragments in that pixel. A full screen pass
of the fragment shader will then sort the A-buffer and blend the fragments
by their sorted index into a final result. Below is a code fragment showing
the creation and sorting of a basic example. Ignoring the data types, it

can be seen that the basic implementation follows a traditional flow for
iterating through the fragments, adding them to the structure, and then
sorting them. Since this data is independent of the view, the model can

bherma3 wdworak2 CS488 6

http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA

be reblended quickly as the view moves around the object since all the
data in the sorted A-Buffer can be maintained as long as the model or
models are not transformed.

5.1.1. Meshkin’s Method is the first to implement order independent

transparency was in 2007. This equation is represented in code
below and commutes a weighted sum and the scene is setup in
the same way as with the Additive Blending method covered
previously. This basic function works well then the alpha is small
and the colors similar due to how the results are sorted back to
front and over compositing. When the alpha is large the intensity
and colors may deviate greatly from the original surface and
background colors.

drawOpaqueSurfaces();
copyColorBufferToTexture(C0Texture);
glDepthMask(GL_FALSE);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
bindFragmentShader("
...
uniform sampler2D C0Texture;
void main() {
...
vec3 C0 = texelFetch(C0Texture,
ivec2(gl_FragCoord.xy), 0).rgb;
gl_FragColor = vec4(Ci ­ ai * C0, 1.0);
}", C0Texture);
drawTransparentSurfaces();

5.1.2. Bavoil and Myer’s method improves the approximation for

coverage and color using a weighted average operator. The code
example below shows this implemented and is worth noting

bherma3 wdworak2 CS488 7

http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA

includes the GL_ONE_MINUS_SRC_ALPHA as seen in the
multiplicative blending example previously.

drawOpaqueSurfaces();
bindFramebuffer(accumTexture, countTexture);
glDepthMask(GL_FALSE);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
bindFragmentShader("...
gl_FragData[0] = vec4(Ci, ai);
gl_FragData[1] = vec4(1);
...}");
drawTransparentSurfaces();
unbindFramebuffer();
glBlendFunc(GL_ONE_MINUS_SRC_ALPHA,
GL_SRC_ALPHA);
bindFragmentShader("...
vec4 accum = texelFetch(accumTexture,
ivec2(gl_FragCoord.xy), 0);
float n = max(1.0, texelFetch(countTexture,
ivec2(gl_FragCoord.xy), 0).r);
gl_FragColor = vec4(accum.rgb / max(accum.a,
0.0001),
pow(max(0.0, 1.0 ­ accum.a / n), n));
...}", accumTexture, countTexture);

5.1.3. The main issue with these methods that has yet to be solved is the
problem on unbounded complexity. Since this method is directly
linked to hardware feature support, and buffers have obvious
physical limitation, extreme complexity can make this method
infeasible and require the end user to endure a less accurate
rendering..

bherma3 wdworak2 CS488 8

http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA

Examples Of Order Independent Transparency

bherma3 wdworak2 CS488 9

http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA

bherma3 wdworak2 CS488 10

http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA

Sources:

White Paper I Order Independent Transparency (OIT) in PTC Creo Parametric 2.0
http://www.amd.com/documents/creooit_white_paper.pdf

OpenGL SuperBible: Order Independent Transparency (2013)
http://www.openglsuperbible.com/2013/08/20/is-order-independent-transparency-reall
y-necessary/

Journal of Computer Graphics Techniques Vol. 2, No. 2, 2013:
Weighted Blended Order-Independent Transparency
http://jcgt.org/published/0002/02/09/paper.pdf

Casual Effects March 9, 2014: Weighted, Blended Order-Independent Transparency
http://casual-effects.blogspot.com/2014/03/weighted-blended-order-independent.html

Order Independent Transparency in OpenGL 4.x
http://on-demand.gputechconf.com/gtc/2014/presentations/S4385-order-independent
-transparency-opengl.pdf

bherma3 wdworak2 CS488 11

http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA
http://www.google.com/url?q=http%3A%2F%2Fwww.amd.com%2Fdocuments%2Fcreooit_white_paper.pdf&sa=D&sntz=1&usg=AFQjCNE-oXXWXh2yugudU15gIC_y4mEdpQ
http://www.google.com/url?q=http%3A%2F%2Fwww.amd.com%2Fdocuments%2Fcreooit_white_paper.pdf&sa=D&sntz=1&usg=AFQjCNE-oXXWXh2yugudU15gIC_y4mEdpQ
http://www.google.com/url?q=http%3A%2F%2Fwww.amd.com%2Fdocuments%2Fcreooit_white_paper.pdf&sa=D&sntz=1&usg=AFQjCNE-oXXWXh2yugudU15gIC_y4mEdpQ
http://www.google.com/url?q=http%3A%2F%2Fwww.openglsuperbible.com%2F2013%2F08%2F20%2Fis-order-independent-transparency-really-necessary%2F&sa=D&sntz=1&usg=AFQjCNFQQu4bs-DoOFD6doMq_7VR4rY6Tg
http://www.google.com/url?q=http%3A%2F%2Fwww.openglsuperbible.com%2F2013%2F08%2F20%2Fis-order-independent-transparency-really-necessary%2F&sa=D&sntz=1&usg=AFQjCNFQQu4bs-DoOFD6doMq_7VR4rY6Tg
http://www.google.com/url?q=http%3A%2F%2Fwww.openglsuperbible.com%2F2013%2F08%2F20%2Fis-order-independent-transparency-really-necessary%2F&sa=D&sntz=1&usg=AFQjCNFQQu4bs-DoOFD6doMq_7VR4rY6Tg
http://www.google.com/url?q=http%3A%2F%2Fwww.openglsuperbible.com%2F2013%2F08%2F20%2Fis-order-independent-transparency-really-necessary%2F&sa=D&sntz=1&usg=AFQjCNFQQu4bs-DoOFD6doMq_7VR4rY6Tg
http://www.google.com/url?q=http%3A%2F%2Fjcgt.org%2Fpublished%2F0002%2F02%2F09%2Fpaper.pdf&sa=D&sntz=1&usg=AFQjCNElb-GaHBxzPPq2PZaWgxmvji8bsw
http://www.google.com/url?q=http%3A%2F%2Fjcgt.org%2Fpublished%2F0002%2F02%2F09%2Fpaper.pdf&sa=D&sntz=1&usg=AFQjCNElb-GaHBxzPPq2PZaWgxmvji8bsw
http://www.google.com/url?q=http%3A%2F%2Fjcgt.org%2Fpublished%2F0002%2F02%2F09%2Fpaper.pdf&sa=D&sntz=1&usg=AFQjCNElb-GaHBxzPPq2PZaWgxmvji8bsw
http://www.google.com/url?q=http%3A%2F%2Fcasual-effects.blogspot.com%2F2014%2F03%2Fweighted-blended-order-independent.html&sa=D&sntz=1&usg=AFQjCNFnsN9b4O36LuW9p8NB9D-Ym3geZw
http://www.google.com/url?q=http%3A%2F%2Fcasual-effects.blogspot.com%2F2014%2F03%2Fweighted-blended-order-independent.html&sa=D&sntz=1&usg=AFQjCNFnsN9b4O36LuW9p8NB9D-Ym3geZw
http://www.google.com/url?q=http%3A%2F%2Fcasual-effects.blogspot.com%2F2014%2F03%2Fweighted-blended-order-independent.html&sa=D&sntz=1&usg=AFQjCNFnsN9b4O36LuW9p8NB9D-Ym3geZw
http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA
http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA
http://www.google.com/url?q=http%3A%2F%2Fon-demand.gputechconf.com%2Fgtc%2F2014%2Fpresentations%2FS4385-order-independent-transparency-opengl.pdf&sa=D&sntz=1&usg=AFQjCNHeD7H5nG_N13PwoB1ucr61dD-qAA

