
CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Overview

By end of the week:

- Know the basics of git
- Make sure we can all compile and run a C++/ OpenGL program
- Understand the OpenGL rendering pipeline
- Understand how matrices are used for geometric transformations
- Understand how the projection from 3D to 2D is encoded in a matrix

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

OpenGL – Vertex Transformation

Moving a point in 3D space to a 2D screen…

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

OpenGL – Coordinate systems

The Object or Local coordinate system is defined in terms of the Geometry itself.
The origin is usually the center or the lower-left of the object.

The Model or World coordinate system defines the x, y, and z axes which serve

as a basis for the 3D space. Where is the origin? Which way is up?

The Eye, Camera, or View coordinate system defines another set of x, y, and z

axes which server as a different basis for the 3D space. The camera is always
positioned at the origin of this coordinate system.

The Clip coordinate system describes the bounded view of the visible by the

camera in terms of both the “lens” of the camera, its “depth of focus”, and the
aspect ratio of the screen bounds.

The Normalized Device coordinates is the same view normalized from -1 to +1

along each axis.

The Window coordinates are these x and y coordinates positioned within the

screen bounds. The z is used for depth-testing and is bound between 0 and
1.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Matrix multiplication

 for each pair i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ p

For example:

The multiplication of a matrix by a vector results in a vector (which can be

thought of as a matrix with a single column):

[1 0 ; -1 3] [3 ; 2] = [1 * 3 + 0 * 2 ; -1 * 3 + 3 * 2] = [3 ; 3]

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Chirality of coordinate systems

In general, we intuitively think of defining 3D space with a “Left-handed”
coordinate system, where the x axis goes from left to right, the y axis goes
from bottom to top, and the z axis goes from you into the distance.

In a “Right-handed” system, one of these axes would be reversed. For example, if

we thought of the x axis as going from left to right, the y axis as going from
you into the distance, and the z axis as going from bottom to top. OpenGL
uses a Right-hand system.

Why is it called Right-handed? Make an L with your thumb and your index

finger. The thumb is the positive x axis, the index finger is the positive y axis.
Make your middle finger orthogonal to the thumb and index finger. It
represents the positive z axis heading toward from you. DirectX and
Processing use a Left-hand system.

If you situate your thumb and index finger in the same way with your left hand,

the z axis will be heading away you. There is no way to rotate a Left-hand
system into a Right-hand system. However you can move between one and
the other simply by scaling one of the axes by -1.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Modelview Matrix

The modelview encodes the information about the world coordinates and the
camera coordinates and orientation. It is used to transform a point from
object coordinates into eye coordinates.

The modelview matrix is an “affine” transformation matrix. It is composed of a

3x3 matrix representing any linear transformation (or combination of linear
transformations) along with a vector representing a translation:

Where A is a 3x3 Matrix representing a linear transformation and the b vector

represents a translation. x is the input vector and y is the transformed vector.
Algebraically it is the same as this:

 The extra stuff isn’t actually needed until we multiply by the projection matrix.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Linear transformations

The upper left 3x3 matrix encodes a linear transformation (or combination
of linear transformations). Basically a linear transformation is some type
of operation which preserves vector addition and scalar multiplication.

(You can think of the function f as the process of multiplying a matrix by a

vector. In the above equations “a” is a scalar, x and y are vectors)

That is, all if I take two vectors and multiply them each by the matrix, and

then add those vectors together or scale them by some number, it is the
same as if I had taken those vectors and added them together or scaled
them first and then multiplied the result by the matrix…

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Linear transformations

Simple example in 2D:

 if and we have the vectors (2, 3) and (6, 5)…

Then adding the vectors together = (8, 8)
and then multiplying by A = (8, -8)

Which is the same as multiplying them both by A = (2, -3) and (6, -5)
And then adding them together = (8, -8).

In 3D graphics the most common linear operations are scaling and rotation.

Geometrically, any linear operation keeps the origin in the same place.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Linear transformations

Each row of the upper left 3x3 corresponds to an axis:
 x1, x2, x3
 y1, y2, y3
 z1, z2, z3

The simplest one is the “standard basis”, which looks like the normal

Cartesian graph.
 x = (1, 0, 0)
 y = (0, 1, 0)
 z = (0, 0, 1)

Any point in 3D can be represented as linear combination of these three

axes:
 v = (v1, v2, v3) = (v1 * x, v2 * y, v3 * z)

Multiplying any vector v by this matrix A “places” it in the standard

coordinate system.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Rotation

We can rotate the entire coordinate system by multiplying it by a
transformation matrix. The following matrices encode a rotation by angle
theta around the specified axis.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Rotation

If we want to rotate a point p that is pointed to by the vector v around the z axis
we move the x and y basis vectors in a proportional circular motion.

Now we can refer to p by this new rotated coordinate system simply by

multiplying the vector v by this matrix. This returns a new vector, u.

u points to the same location that v points to, that is, p. Now if we use u in our

original coordinate system (by multiplying u by our original matrix) we have
in effect rotated the point p.

For example, to rotate the point p=(2,2,0) 45° around the z-axis:

I = (1 0 0 ; 0 1 0 ; 0 0 1) and R = (.707 -.707 0 ; .707 .707 0; 0 0 1)
v = (2 ; 2 ; 0)
u = (Rv) = (2 * .707 + 2 * -.707 + 0 ; 2 * .707 + 2 * .707 + 0 ; 2 * 0 + 2 * 0 + 0 * 1)

 = (0 ; 2.828 ; 0)

And (Iu) = (0 ; 2.828 ; 0) which points to our new rotated location.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Affine transformation

To simultaneously rotate and translate a point in 3D we need the extra
information in the 4x4 affine transformation matrix, where the 4th
column represents the translation.

We also need to refer to points in homogeneous coordinates. In matrix

algebra you don’t ever refer to points per se, you refer to vectors, and
vectors only have an orientation and a magnitude– they don’t have a
location. The 4th component of an homogeneous vector indicates
whether or not we are thinking of it as a point or not. In general, we use
the modelview to transform points in space, and so in most cases the 4th
component is 1.

Homogeneous coordinates are ubiquitous in computer graphics because

they solve the problem of representing a translation and projection as a
matrix operation.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Homogeneous Coordinates

A 3D point in homogeneous coordinates looks like this has four elements, x,
y, z, and w.

To map a point (x, y, z, w) in homogeneous coordinates back to normal

Euclidian coordinates we divide each component by w:

(x’, y’, z’) = (x/w, y/w, z/w) = (x, y, z, w)

The idea is that anything along a line with the gradient defined by x, y, and z

will be projected onto the same point on a specified plane, w = 1.

Thus, for instance, the following points are equivalent:

(5, -2, 3, .5) and (20, -8, 12, 2), since (x/w, y/w, z/w) both equal (10, -4, 6).

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Modelview

The modelview matrix is created by multiplying the model matrix (which
encodes the location and orientation of the world coordinates) with the
view matrix (which encodes the location and orientation of the camera) .

Example:

We use the standard basis for our world coordinates, and then translate it 10

units to the right.

We then move the camera 10 units away along the z axis and rotate it 45° to

the right.

Question: what does the modelview matrix look like?
Question: where does the point (5,5,2) appear in eye coordinates?

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Modelview

The standard basis A = (1 0 0 ; 0 1 0 ; 0 0 1)
The translation vector b = (0 ; 0 ; -10)

so our model matrix M = (1 0 0 0 ; 0 1 0 0 ; 0 0 0 1 ; 0 0 -10 1)

Then we can update the M by multiplying by a rotation matrix:
The 45° rotated basis on the z axis

 Rz = (.707 -.707 0 0 ; .707 .707 0 0; 0 0 1 1; 0 0 0 1)

so our modelview matrix

 M = (.707 -.707 0 0 ; .707 .707 0 0 ; 0 0 1 0 ; 0 0 -10 1)

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Clip Coordinates

The view frustum is defined from the point of view of the camera.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Clip Coordinates

Defining the view frustum using a perspective transformation.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Projection Matrix

The Projection Matrix defines how much of the world is seen by the camera.
It encodes the following information:

The near plane and the far plane: The range of depth in the world that the

camera can see.

The field of view angle that the camera sees in the y direction.

The aspect ratio of the screen which the world will be projected on.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Projection Matrix

The near plane and far plane define the distance along the z axis from the
camera origin. The near plane needs to be a distance > 0 and the far
plane needs to be < infinity. Common values are .1 and 100, but it
depends on how you decide to position things in the world.

The field of view, or “fovy”, defines the angle in the y direction

The aspect ratio (width/height) of the screen bounds thus defines the

clipping in the x axis.

These values are used to define the view “frustum” in terms of 6 values, the

left, right, top, bottom, near, and far bounds of the world.

The projection matrix transforms the view “frustum” into a unit cube.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Projection Matrix

The actual Projection Matrix looks likes this:

(2n / (r – l) , 0 , -(r + l) / (r - l), 0)
(0 2n / (t - b) , (t + b) / (t - b) , 0)
(0 0 , -(f + n) / (f - n) , - (2fn) / (f - n))
(0 0 , 1, 0)

Where n and f are the near and far planes,
t and b are defined by the fovy
And l and r are further defined by the aspect ratio

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Example: Transforming a vertex

To transform our 3D point from object coordinates into 2D window coordinates we do the
following operations:

Given a vertex vo in object coordinates (xo,yo,zo,wo), where wo is always 1.

Put the object point into eye coordinates by multiplying it by the MODELVIEW matrix M

(which concatenates the transformation from object coordinates à world
coordinates à eye coordinates)…
 ve = Mvo

Put the vertex into clip coordinates by multiplying it by the PROJECTION matrix P

 vc = Pve

Put the vertex into normalized device coordinates by dividing by the wc value of vc.
 vd = (xc / wc, yc / wc, zc / wc)

Put the vertex into screen space by scaling xc and yc by the width and height of the

screen.
 vp = (width/2 + (xd * width/2), height/2 + (yd * height/2))

