
CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Overview

By end of the week:

- Know the basics of git
- Make sure we can all compile and run a C++/ OpenGL program
- Understand the OpenGL rendering pipeline
- Understand how matrices are used for geometric transformations
- Understand how the projection from 3D to 2D is encoded in a matrix
- Load and use an image texture

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

OpenGL – Vertex Transformation

Moving a point in 3D space to a 2D screen…

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Clip Coordinates

The view frustum is defined from the point of view of the camera.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Clip Coordinates

Defining the view frustum using a perspective transformation.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Projection Matrix

The Projection Matrix defines how much of the world is seen by the camera.
It encodes the following information:

The near plane and the far plane: The range of depth in the world that the

camera can see.

The field of view angle that the camera sees in the y direction.

The aspect ratio of the screen which the world will be projected on.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Projection Matrix

The near plane and far plane define the distance along the z axis from the
camera origin. The near plane needs to be a distance > 0 and the far
plane needs to be < infinity. Common values are .1 and 100, but it
depends on how you decide to position things in the world.

The field of view, or “fovy”, defines the angle in the y direction

The aspect ratio (width/height) of the screen bounds thus defines the

clipping in the x axis.

These values are used to define the view “frustum” in terms of 6 values, the

left, right, top, bottom, near, and far bounds of the world.

The projection matrix transforms the view “frustum” into a unit cube.

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Projection Matrix

The actual Projection Matrix looks likes this:

(2n / (r – l) , 0 , -(r + l) / (r - l), 0)
(0 2n / (t - b) , (t + b) / (t - b) , 0)
(0 0 , -(f + n) / (f - n) , - (2fn) / (f - n))
(0 0 , 1, 0)

Where n and f are the near and far planes,
t and b are defined by the fovy
And l and r are further defined by the aspect ratio

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Useful GLM methods

glm::mat4 proj = glm::perspective(60.0, width/height, 0.1, 100.0);

//creates a symmetrical perspective projection matrix
//arg 1,2,3,4 = fovy, aspect ratio, near plane, far plane

glm::vec3 camera_pos = vec3(0,0,-2);
glm::vec3 camera_look_at = vec3(0,0,0);
glm::vec3 camera_up = vec3(0,1,0);
glm::mat4 view = glm::lookAt(camera_pos , camera_look_at , camera_up);

//pos = position of camera in world space
//look_at = position camera is looking at; defines “view vector” emenating
out from the camera
//up = the orientation of the camera around the view vector

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Example: Transforming a vertex

To transform our 3D point from object coordinates into 2D window coordinates we do the
following operations:

Given a vertex vo in object coordinates (xo,yo,zo,wo), where wo is always 1.

Put the object point into eye coordinates by multiplying it by the MODELVIEW matrix M

(which concatenates the transformation from object coordinates à world
coordinates à eye coordinates)…
 ve = Mvo

Put the vertex into clip coordinates by multiplying it by the PROJECTION matrix P

 vc = Pve

Put the vertex into normalized device coordinates by dividing by the wc value of vc.
 vd = (xc / wc, yc / wc, zc / wc)

Put the vertex into screen space by scaling xc and yc by the width and height of the

screen.
 vp = (width/2 + (xd * width/2), height/2 + (yd * height/2))

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Textures

Loading textures by hand is kind of a pain. OpenGL environments generally
provide helper methods. We’re using Cocoa/iOS methods (for Apple) or
FreeImage (for Windows and Linux) which handles most of this.

A texture is just an array of data, can be used for images, depth maps,

luminance maps, etc

1.  enable textures and generate texture ids
2.  bind a specific texture id
3.  load image from disk
4.  put it into a texture object – usually 2D, RGBA format
5.  set texture attributes (eg, linear filtering, clamping)

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Textures

Textures are copied directly onto the video card, so drawing them is
“hardware-accelerated”

First, we call our helper method to load, say, a JPEG into a buffer of bytes, say

a variable called “imgPixelData”

glEnable(GL_TEXTURE_2D);
glGenTextures(1, texID); //bind 1 textures to IDs
glBindTexture(GL_TEXTURE_2D, texID);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(texID, 0, GL_RGBA, imgWidth, imgHeight, 0, GL_RGBA,

GL_UNSIGNED_BYTE, imgPixelData);
glBindTexture(GL_TEXTURE_2D, 0); //unbind texture

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Textures - openGL

program.bind(); {
 //pass in uniform data ... one of which will be a pointer to a texture
 glUniform1i(program.uniform(”u_tex_id"), 0);

 glActiveTexture(GL_TEXTURE0) //the number here must match the ID above!

 glBindTexture(GL_TEXTURE_2D, texID) { //bind the texture
 //now pass in vertex data ...
 glBindVertexArray(vao); {
 glDrawElements(GL_TRIANGLES, 12, GL_UNSIGNED_INT, 0);
 } glBindVertexArray(0);
 } glBindTexture(GL_TEXTURE_2D, 0); //unbind texture

 } program.unbind();

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Textures – vertex shader

uniform mat4 proj;
uniform mat4 view;
uniform mat4 model;
in vec4 vertexPosition;
in vec3 vertexTexCoord;
out vec2 texCoord;

void main() {
 texCoord = vertexTexCoord.xy;
 gl_Position = proj * view * model * vertexPosition;

}

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Texture – fragment shader

uniform sampler2D u_tex_id;

in vec2 texCoord;
out vec4 outputFrag;

void main(){
 outputFrag = texture(u_tex_id, texCoord);
}

CS 488 F2014 Computer Graphics I: Real-Time Rendering Prof. Angus Forbes

Homework package #1

I will send the first homework out tonight or tomorrow.

Will be due on Monday 9/15 in the evening (11:59pm).

1. A small sized programming project that makes use of the basic OpenGL /
GLSL we’ve learned this week (and will cover next week)

2. Some smaller programming examples

3. A series of (hopefully) simple problem solving questions that you could
do by hand

I’ll announce details via Piazza...

