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- Lab



Creative AI reports
What is creative, original, exciting about the project? 
What do you like about it? What drew you to it? 
What other creative works does it remind you of? 
Describe in detail how what it does and how it works. 
What generative, AI, or machine learning techniques 
does it build off of or make use of? 
What would you have to learn in order to create a 
similar project? 
How would you implement this project? 



Overview of Neural Networks
- Artificial Neural Networks (ANNs, or just NNs), and their 
many flavors, are all inspired from our understanding of 
how the brain works. 

- Although biological networks are extremely complex, 
even the very oversimplified representations used in 
ANNs have shown to be very useful for interpreting (and 
synthesizing!) really world complex data. 

- ANNs provide an approach for “learning” to 
approximate various types of functions, real-valued, 
discrete valued, and vector-valued. 

                      Tom Mitchell, Machine Learning (1997)







Overview of Neural Networks
Human brain contains ~100,000,000,000 neurons, each 
of which is connected to between 10,000 to 100,000 
other neurons. The process of responding to sensory 
input, managing our various bodily systems, controlling 
our motor functions, and thinking involves the 
constant firing of neurons. 

Yet, these neurons fire relatively slowly - about 1/1000th 
a second (much slower that the speeds of your CPU.) It 
takes ~1/10th of a second to recognize somebody.  



Overview of Neural Networks
Because the speeds are so slow, it seems clear that the 
information processing abilities of the brain is due to 
highly parallel processes operating on neurons 
distributed across the brain. Advances in brain imaging 
(eg, MRI, Calcium Imaging) have illustrated this clearly. 

The field of ANN started with some simple formulations 
to emulate the processing power of neurons. Described 
most simply, a neuron “fires” (outputs an electrical 
charge) once it has reached a particular threshold of 
input electrical activity from it’s neighbors. 





Overview of Neural Networks
Interesting piece of history - one of the forefathers of 
NNs is Warren McCulloch, who came up with the first 
mathematical formulations of neural networks in 1943 
while a professor at UIC in the Dept. of Psychiatry (in 
collaboration with Walter Pitts at UC).  

- “A Logical Calculus of Ideas Immanent in Nervous 
Activity,” McCulloch and Pitts, 1943

- http://nautil.us/issue/21/information/the-man-who-
tried-to-redeem-the-world-with-logic



Overview of Neural Networks
Based on McCulloch and Pitts work, and the work of 
many others, Frank Rosenblatt designed the first 
“perceptron” in the late 1950s, and built it with analog 
circuits. It is capable of taking multiple inputs and 
classifying them into two different classes. If the data is 
linearly separable, then it will always converge to an 
accurate solution (although not always an optimal 
solution). 







Overview of Neural Networks
The perceptron is a simple structure that takes in an 
“input vector”, which consists of some number of 
elements. A weight are attached to the link between 
each input element and the “perceptron” itself. The 
perceptron “learns” these weights during the training 
session. 





Overview of Neural Networks
In the training session, you start with labeled data — 
data for which you know the correct answer. The 
perceptron encodes a simple step function that outputs 
either a 0 or a 1, based on a simple summation: output 
= for (1 to n), o += input(k) * weight(k). if the o value > 
0, then output (“fire”) a “1". Otherwise do not.  



Overview of Neural Networks
The weights originally will be set at random, and so you 
might as well flip a coin. But what the perception does 
is change the weights based on how far off the answer 
was. The weights are updated so that they more closely 
approximate the correct answer.  

newWeight = prevWeight + 
     ((desiredOutput - prevOutput) * prevInput) 



Overview of Neural Networks
If this is done enough times, and the data is linearly 
separable, then the neural network will converge so 
that the preceptrons output always matches the desired 
output.  

Then, assuming that your training set matches real-
world conditions, inputting any new data should also 
result in the correct answer. 



Overview of Neural Networks
The limitations of the original perceptron NN is that it 
can only learn linear functions, and that it can only 
distinguish between two categories.  
 
To enhance the power of NNs, these artificial 
preceptors can be chained together to create 
“multilayer” networks.  

The “traditional” NN that is the basis of all of the NNs 
we’ll look at in this class is a form of the multilayer 
network that uses “backpropogation” to update 
weights attached to the links between nodes. 





Overview of Neural Networks
- Uses a different “perceptron” - a “threshold unit” that is 
a sigmoid and tanh function instead of a step function, 
which makes it easier to encode non-linear functions. 
- uses multiple “hidden” layers.  
- uses gradient descent to minimize error, updating 
weights incrementally. 
- applies different strategies to attempt to not fall into 
local minima (i.e. to not converge on functions that aren’t 
appropriately expressive of the range of training data). 



Overview of Neural Networks
- The Multilayer NN, (sometimes called a BPNN) is trained 
to detect particular features. If you have training data of 
many faces, you can label the data in terms of any 
features you want, and provide an output neuron for that 
feature. 

- For example, one neuron for eye color, one for hair 
color, skin color, glasses, etc. The output vector will 
contain the amount that the NN thinks the photo is likely 
to be in each class. 



Overview of Neural Networks
- For training, we can assume that a perfect answer would 
be [1,0,0,0] for correct eye color. And just as in the real-
world, an item can belong to multiple categories, and our 
neurons would fire for these multiple categories, so can 
backpropogate multiple values simultaneously. 



Overview of Neural Networks
- hidden layers:
can learn to invent new features not explicit to the data. 
One common example used in into NN classes shows an 8 
x 3 x 8 network for mapping a number to itself. The 
hidden layer learns to encode binary numbers (3 bits are 
required to encode 8 binary numbers)  

- overfitting: 
too much training / too many neurons / layers - can have 
an adverse effect, causing the NN to be highly sensitive 
to the original training data, and to fail to be 
generalizable to other, similar data.  



Overview of Neural Networks
- implicit biases in training data:
there are *lots* of examples where this assumption does 
not hold in the real-world, and it can be tricky to find a 
dataset that has wide enough coverage to generalize to 
real-world situations.
- Camouflaged tanks in trees
- http://www.theverge.com/2016/3/24/11297050/tay-
microsoft-chatbot-racist (@TayTweets)
- http://www.usatoday.com/story/tech/2015/07/01/google-
apologizes-after-photos-identify-black-people-as-gorillas/
29567465/
- https://www.nytimes.com/2016/07/01/business/self-
driving-tesla-fatal-crash-investigation.html



Overview of Neural Networks
Recurrent NNs (RNNs) 

- Attempt to model time series or sequential data (e.g., 
videos, texts, speech)  
- Some of the outputs of the NN for one time 
period are used as inputs into the next time period. 
These neurons “learn” aspects of each time series and 
the changes between them. 



Overview of Neural Networks
Convolutional NNs (CNNs) 

- Attempt to model visual processing, which has been 
suggested to be hierarchical or “pyramidal” in nature
- Detects high-level features first, then more fine 
grained features
- Uses convolution to identify rotation-invariant features
- Math is similar to commonly used mathematics in 
image processing kernels



Deep Dream





Project 1
- Implement Deep Dream or Neural Style
- Learn by doing!
- Main goal is to understand:

Tensorflow code (lots of examples, tutorials 
online to learn from)

Neural Network architecture and algorithms
- Can work alone in groups of 2 or 3
- An interactive interface would be nice as well, 
plus adding your own twist to it... but main goal 
is get used to coding in python + TF



Lab
- Has everyone been able to run the MNIST example 
from the TF website?
- No? 

then work on it now!
- Yes?

then: 
   a) help others
   b) work through the other MNIST example
   c) figure out how to visualize neurons (the weights 

attached to the neurons) during (and at end of) training
        d) visualize the number that were misclassified –   

       can you infer why the NN got confused? 



Next Week
- Project 1 updates
- CNNs
- RNNs


