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Abstract
Within the field of neuroimaging the use of time-varying data is both commonplace and a critical component
towards the development of a critical medical diagnosis as well towards the advancement of our understanding
of the human brain. Present visual analysis techniques revolve around two-dimensional (2D) slice representations
which though useful in their own right limits access to the spatio-temporal features inherent in these datasets. This
work assess the current state of the art with regards to time-varying volume visualizations with a discussion on
some of the most common tools used to visualize time-varying medical images as well as providing a discussion
on current challenges and techniques when dealing with these complex types of data.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Time-varying—
Volumetric Neuroimaging data

1. Introduction

The human brain is an incredibly complex and mysterious
organ which has fascinated the human race for ages [BG11].
The study of the human brain shares an equally long and
complex history, experiencing constant changes in terms of
our understanding of how this incredible structure works
[Rai09]. While there are many aspects to the study of the
human brain, perhaps the most exciting, or at least relevant
within the modern age of Information, is the field of Neu-
roimaging. Within the study of the human brain, neuroimag-
ing has proven to be an incredibly valuable contributor, both
in terms of its ability to elucidate complex cognitive func-
tions within live brains, but also as a mean in which to see
the brain [VHGRG04].

The use of time-varying data within the field of neu-
roimaging is both commonplace and a critical component
towards the development of a critical medical diagnosis for
a patient or to one’s hypothesis when investigating neural
functions such as language processing or visual-cognition
[GWL∗08,VHGRG04]. Thanks to advances in modern med-
ical imaging, images can be collected faster while still main-
taining high spatial resolutions which has opened the door
towards the acquisition of larger, more complex multi-modal
data [EWS14]. With new technology comes new problems,
particularly as data grows in terms of size and complex-
ity [EWS14,VHGRG04]. Present visual analysis techniques
revolve around two-dimensional (2D) slice representations
which, though useful in their own right, can be limiting and

often time-consuming when attempting to compare different
images of the same patient slice-by-slice, or when attempt-
ing to examine changes within a functional network across
a collection of datasets, such as those involved in language
learning or the progression of neuro-degenerative diseases.

The aim of this work is to provide a survey of visualiza-
tion tools and techniques used in the representation of Multi-
temporal and time-varying volumetric data, with a special
emphasis on current and future applications within the do-
main of neuroimaging. The contributions of this paper in-
clude a high level overview of the domain that is neuroimag-
ing as it relates to the types of data used and their role within
temporally focused research such as imaging the neural cor-
relates of language learning networks. This paper also of-
fers a discussion of the most common tasks associated with
this domain in addition to a high level overview of the State
of the art when it comes to visualization methods and tech-
niques currently used by visualization and neuroimaging re-
searchers. Finally, supplementary material has been included
from qualitative interviews with domain experts for the read-
ers reference.

2. Domain

Advances in modern medical imaging have paved the way
for numerous techniques, such as Magnetic Resonance
Imaging (MRI) and Electroencephalography (EEG), which
have opened the door towards acquiring complex multi-
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modal data. One technique, known as functional Magnetic
Resonance Imaging (fMRI), has enabled neuroimaging re-
searchers and clinicians to detect metabolic changes within
the cerebral tissue. This effect is known as the Blood-
Oxygen-Level-Dependent (BOLD) signal and is the result
of an increase in oxygen delivery to active cerebral tissue,
which in turn results in changes to the local magnetic field.
[SRWE07] This provides for high spatial resolution of active
brain regions which, when combined with an anatomical ref-
erence such as MRI data enables researchers to glean impor-
tant insights into the complex operations of human cognitive
processes, such as learning. However, fMRI data is time-
dependent and highly complex, requiring immense prepro-
cessing in order to extract viable signal from the data, and
dozen of volumes must be collected in order to capture and
model this signal in relation to brain function.

In typical fMRI visualization applications, multiple vol-
umes are rendered individually or in conjunction with one
another in an overlaying fashion. This is acceptable if the
image(s) in question are static, or represent the averages of
multiple sessions. However, studies investigating the pro-
gressive degeneration of neural tissue and function, such as
corticobasal syndrome and Alzheimer’s disease, require sev-
eral sets of images describing the diseases progression over
time. More recently, work has begun to examine how learn-
ing networks evolve over time, such as through the course
of learning a novel language. In these cases, several series of
images are generated which show the progressive evolution
of neural networks through time. Through the use of advance
statistical analyses and data reduction techniques, additional
dimensions become accessible, but which require more ad-
vanced visualization techniques in order to effectively repre-
sent their meaning and implications. In these cases, existing
tools can be cumbersome and limit the user’s ability to ex-
plore and analyze the dynamic aspects of their data.

It should be mentioned that the terms temporal and time-
varying data bear wide interpretations depending on the do-
main and even the data in question. For the purpose of this
survey, when referring to temporal and time-varying in the
context of neuroimaging and fMRI data, we mean a tem-
poral within data resolution on the order of seconds. That
is, a single fMRI data volume typically consists of 100 or
more whole brain snapshots. Images are collected sequen-
tially with a latency between 1000ms up to 5000ms. For
data collected using systems like EEG, this latency is fre-
quently on the order of nanoseconds. Outside the discussion
of fMRI and neuroimaging related data collection methods,
the author will provide clarification as needed.

3. Domain Specific Tasks

By the very nature of the data collected, visual tasks are
an intrinsic component of the domain’s research. A cardi-
nal rule within the domain of neuroimaging, is to Always
inspect your data visually. This rule lends itself well to visu-

alization in general as proper visual encoding will invariably
assist researchers and domain experts towards to the pursuit
of understanding their data. The most common tasks include:
Exploration, Comparison, and Identification

3.1. Exploration

One of the most important tasks for a neuroimaging re-
searcher is to simply explore data. By visually examining
ones dataset, the researcher can gain insight into the struc-
ture of the image, its quality, and often some insight into the
results. The ability to simply explore the data in order to sup-
port sense making is a fundamental task in Neuroimaging.
Though typically, researchers have a well defined assump-
tion about the contents of their data. For example, a com-
mon exploration task involves visually checking for "oddi-
ties" and "inconsistencies" potentially residing in the dataset.
These "oddities" can be related to subject motion, which is
the result of patients moving during a scan, or they could
be scanner related artifacts such as a sudden drop in signal
in a region of the brain [COA∗12]. Dedicated neuroimaging
analysis tools, like AFNI [Cox96] and SPM [spm14] have
built-in components which enable a user to visually exam-
ine their data at each point along the data processing and
analysis pipeline. Furthermore, visually assessing the spatial
layout of clusters of activation can provide researcher with
an accurate sense of the distribution of neural resources the
brain employs when solving a task, or, as in the case of dis-
ordered brains, where potential sources of problems may be
occurring.

3.2. Comparison

Frequently, researchers need to compare one dataset to an-
other, for example when comparing a "typically developing"
brain’s data to a developmentally impaired brain, or compar-
ing the results of two experimental conditions against one
another. Recently, Plante et. al, [PPD∗14] explored the neu-
ral correlates of novel language learning between a group
of controls and experimental subjects. They found that con-
trol subjects recruited fewer regions of the brain when asked
to listen to ’shallow’ stimuli. That is, they were presented
with a fake language that for all intents and purpose sounded
like natural language, but which had no meaningful informa-
tion contained within. By contrast, the experimental group
showed numerous regions of the brain recruited when pre-
sented with real Norwegian sentences. In this instance, sim-
ply being able to see on a whole brain scale, the topological
differences between the two images can be incredibly valu-
able towards developing the next steps in a high-level analy-
sis.

Beyond analysis procedures comparison tasks are em-
ployed during the preprocessing stages of the analysis as a
means of checking that the data is visually conforming to
your expectations in terms of those data processing steps.
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For example, a common step in processing brain imaging
data is to register the 3D grid to a standardized ‘atlas’ or tem-
plate space [Rob04]. The underlying principle being that in
order to account for the wide variability of individual human
brains, ‘warping’ each individual brain to fit a standardized
temple reduces error in inter-subject variability [CJH∗12]. It
adds further benefit by enabling comparison across studies.
That said, alignment algorithms, while certainly robust, are
not fool proof and often take many iterations to ensure the
supplied image has been correctly aligned. Thus comparison
tasks become and intrinsic component of brain imaging from
both a high and low level point of view.

3.3. Identification

Identification tasks are yet another critical operation per-
formed by neuroimaging researchers and other experts
within the medical imaging community. Given the recent
awareness of Traumatic Brain Injury (TBI) within the Na-
tional Football League (NFL) as well as from soldiers return-
ing home from foreign wars, identifying biological markers
indicative of TBI has become an area of significant inter-
est [MRK∗14, CVH∗14].

It is equally important for experts to be able to confidently
identify areas of the brain implicated in a behavioral task,
such as identifying the neural substrates of attentive listen-
ing. In study by Christensen et. al., [CLAP10], they identi-
fied a unique set of neural regions recruited when a partici-
pant was asked to identify certain attributes of spoken words.
For example, in some cases they were told to ignore the con-
tent of the words and only attend to the speaker, while in
other instances they were asked to ignore the speaker and
focus on the content of the word. Through these tasks they
identified distinct neural substrates related to attention and
listening.

Finally, it is critical that a doctor or other medical pro-
fessional be able to quickly and accurately identify neural
regions impacted due to Epilepsy or post-operative Tempo-
ral Lobotomy [THM∗13]. Or when performing preoperative
planning for surgeries such as Tumor removal [PSB∗11].

4. Survey

There has been a growing trend over the past 10 years of
so within the field of scientific visualization towards gen-
erating and interacting with large time-varying volumetric
datasets and the domain of neuroimaging is no exception.
However, understanding and exploring these datasets is still
a major challenge both in terms of managing and expressing
the dimensionality of many of these types of datasets as well
as dealing with their size [ZEP12,KH13]. Furthermore, ren-
dering this kind of data in real time requires the use of some
form of compressed representation as it is not feasible to in-
teractively render every time step in the GPU in real time

[BRGIG∗14]. Though numerous techniques have been de-
veloped to address these issues, often they are limited to the
specific question they were designed to address [AMM∗07]
and differ widely depending on their treatment with regards
to the temporal dimension [WOM13]. With that in mind, ad-
vances in hardware acceleration and programmable GPU’s
have made it easier to develop high-resolution multi-volume
rendering, and numerous applications have been developed
to take advantage of this. The remained of this survey will
spend time examining visualization techniques and applica-
tions employed by non-medical scientific fields and their ap-
proaches to the challenges highlighted herein. These tech-
niques include the use of particle-based rendering methods
in place of more traditional volume rendering techniques
and surface-based mappings. Finally, a discussion on mul-
tiple linked views and their applications towards the use of
visualizing time-varying volumetric neuroimaging data will
conclude the survey.

4.1. Particle-Based Rendering

Within the medical imaging domain, volume rendering
techniques are a popular means of representing ones data
[VSSK12]. The need for fast, interactive visualization tech-
niques are in high demand and while many such tech-
niques exist [KH13], often they are incapable of scaling
to handle time-varying datasets [ZSK14]. Recently, work
has been done exploring the use of particles-based render-
ing (PBR) methods to circumvent some of the more com-
mon hangups, such as low frame-rates and the need for ob-
ject sorting which can be computationally expensive. For
example, particle-based methods typically do not require
depth sorting. Furthermore, graphics hardware being what
it is today, PBR greatly benefits from their parallelized de-
sign [VSSK12, ZSK14]. One application for this technique
involves the fusion of different types of objects represented
in a medically based visualization. For example, being able
to display both the structural gray matter based brain im-
ages fused with fMRI brain images provides a clear repre-
sentation of the topological layout of neural activity. A non-
PBR technique was demonstrated in a paper by Forbes et.
al., [FVAP14]. In their work they present a prototype appli-
cation which used a naive Isosurface Raycasting technique
to displayed multiple fMRI activation meshes fused together
with a structural brain mesh, resulting in an interesting vi-
sualization of functional brain/language networks evolution
over time. That said, the application suffers performance
wise due to the large number of volumes used. Though their
technique is somewhat naive, it does illustrate the limita-
tions, particularly when it comes to volume rendering, when
trying to show multiple datasets at the same time. Often this
is not feasible, at least at interactive frame rates, as the un-
derlying datasets can be quite large. This is especially true
when dealing with time-varying datasets.

To address that problem, Zhao et. al., [ZSK14] developed



K. Almryde / Volume rendering neuroimaging data

Figure 1: 3D+Time Brain View [FVAP14] Using an Iso-
surface raycasting technique to render in detail a functional
language network

a particle-based rendering technique that is capable of han-
dling large volume datasets and can easily fuse multiple ob-
jects together through the use of proxy geometries. Further-
more, their method allows researchers to not only render
their data at interactive frame rates, but also allows for easy
switching between datasets by performing an initial Raycast
which determines the bounds and overall shape of the image.
They circumvent the need for object sorting by redefining
the nature of object opacity. Usually, opacity is determined
from a Transfer function, however Zhao et. al., use a density
function of emissive particles. Thus they mimic the effect of
opacity by substituting it with density of points.

Figure 2: Adaptive Particle-Based Rendering system show-
ing the different frame rates available depending on the vi-
sualization type. Notice the middles image, which uses tra-
ditional mesh based visualization has a painfully slow frame
rate, while the APBR system show acceptable levels while
also maintaining the same quality of the representation

4.1.1. Surface Mapping

A popular technique, especially among neuroimagers is the
use of surface based visualizations via volumetric meshes.
Surface-based neuroimaging analysis is advantageous for at
least four reason:

1) It maintains the topology of cortical gray matter activa-
tion. Due in part to the sampling size and resolution of the
volume itself, neighboring voxels within the brain are not
necessarily sampling neighboring cortical structures. This is
in part due to preprocessing techniques in which voxel data
is smoothed resulting in the loss of topological information.
By mapping the activation data from the volume to the
surface domain, data processing measures can be conducted
on the surface itself, resulting in improved topological
detail.
2) Surface-based analyses increase statistical power
[ADG∗08] due in part to the improved topology and
coherence between voxel information and surface mesh
nodes.
3) Cortical thickness is easy to calculate through the use of
an inner and outer gray matter meshes.
4) Very high quality visualizations of structural and func-
tional brain data [SR12]. While all of these benefits can be
accomplished using volume-based approaches, the com-
putational complexity is much higher. The only overhead
that is typically encountered is in the initial creation of the
surface mesh, which has been alleviated somewhat with
the latest advances in hardware support and more effective
registration algorithms and software.

Figure 3: SUMA [SR12] A pial gray matter mesh with
mapped voxel information

Several applications have been developed for the purpose
of surface based analysis of neuroimaging data, including
FreeSurfer [Fis12], Caret [VEDD∗01], and SUMA [SR12],
from the creators of a very popular neuroimaging statistical
analysis package called AFNI [Cox96,Cox12] (described in
more detail below). Assuming a representative surface mesh
is available, it is easy to link the 3D surface mesh to the 3D
volume data, allowing for one to interact with their data in
several dimensional views. Furthermore, all renderings are
connected such that clicking on any surface, whether 2D or
3D volume views, updates the crosshair location on all visu-
alizations, including time-series graphs. A more recent ap-
plication
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4.2. Multi-linked Views

The concept of multiple linked views can trace its origins to
that of the InfoVis and has been a popular technique when
displaying multi-modal and multi-temporal data for the past
20 years [KH13]. The use of multiple views is advantageous
in that it allows the user to explore different data variables
and attributes side-by-side employing well known visualiza-
tions into a single interface.

Figure 4: AFNI [Cox96,Cox12] 2D orthogonal layout with
a linked time-series graph view of the selected variables, in
this instance 16 voxels across 164 time points

Presently there is a wide range of popular tools which
neuroimagers employ to not only process and analyze their
data, but also to visualize it as well. The most popular
tools used by domain experts within the field include in-
cluding FSL [SJW∗04, WJP∗09] and SPM [spm14] AFNI
[Cox96, Cox12]. AFNI is a UNIX-based open source soft-
ware package for the Analysis of Functional Neuroimag-
ing data. AFNI follows the guided principle that as a tool
it should allow a user to stay close to their data with the
ability to view it in several different ways. In this way a
user is able to become familiar with the structure and re-
sults of their data. AFNI offers good support for both 2D,
3D, and 4D data representations by taking advantage of rep-
resentational views the datasets dimensions. For 4D data, it
visualizes temporal information as an interactive time-series
graph which, when specific points are selected, updates the
2D orthogonal view of the data to show that point in time.
They have also integrated a feature in which the selection
mode automatically traverses the time-series graph, updat-
ing the 2D view in kind. This can be useful when examining
a dataset for subtle changes within the signal as well as when
tracking artifacts due to motion, for example.

Li et. al., [LGF∗12], discusses a novel visual analytics ap-
proach in which integrate multimodal neuroimaging infor-
mation into a unified framework via joint modeling of said
multi-modal data, as well as data visualization and intuitive
user interface. The paper primarily focuses on the applica-
tion and its features, though it provides a comprehensive

Figure 5: VAST [LGF∗12] Showing two sets of linked views
of multiple representations of connectivity data, including
structural connectivity data, evidenced by the Diffusion ten-
sor images (DTI), functional connectivity data as evidenced
by the time series graph, and a volume rendered brain

analysis of the HCI component. The tool incorporates every
type of neuroimaging data, from DTI, functional ROI maps,
and structural anatomical images and encourages the inclu-
sion of all modalities for maximum effectiveness. Though
able to offer numerous image processing functionalities, this
system is through and through a network visualization sys-
tem with the various modalities supporting the application
in that task. Additional features include a network prediction
algorithm which attempts to localize single subject ROIs in
relation to group activation networks.

5. Future Directions

Present visualization techniques for for time-varying volu-
metric visualizations of neuroimaging data have been well
established within their respective community. However, as
data continues to grow in complexity, and data collection
hardware improves in terms of its resolution, more advanced
techniques will need to be employed. The use of Particle-
based rendering methods presented earlier may have some
involvement in this future as they offer better performance
for similar encoding of the same data. In nearly every case
the use of multiple-linked views will likely dominate the de-
velopment of these tools as so far there does not seem to be
a one-view-fits-all model, and arguably there shouldn’t be.

6. Conclusions

Based on the provided survey of the state-or-the-art of Multi-
temporal volume visualization of functional neuroimaging
as well as the responses from Domain experts, it is clear
that each representation of time-varying data is valuable in
its own right. However, no single visualization is capable
of meeting every need of the user, nor should it. Instead, a



K. Almryde / Volume rendering neuroimaging data

best of both worlds approach should be pursued by marry-
ing some or all of these techniques into coordinated mul-
tiple views which take advantage of well-known visualiza-
tions such as appears to be the most desirable in terms of the
needs outlined by the domain experts.

Figure 6: AFNI and SUMA with linked functional data
showing how multiple representations improves visual anal-
ysis and exploration of the data in question

7. Domain Perspectives

The following section examines domain expert’s perspec-
tives on current visual analytic tasks within the domain of
neuroimaging

What is the main research project you work on?
Expert 1: Imaging the neural correlates of language
learning by typical adults and adults with developmental
language impairments. This primarily involves functional
MRI data, but we also collect diffusion tensor images that
are used to visualize white matter pathways.
Expert 2: Neuroimaging correlates of recovery from
aphasia after stroke

What would be an ideal result from your research?
Expert 1:We identify the brain regions that are instrumental
to learning and how people recruit these neural resources
during the learning process. We then identify which sub-
systems are not used optimally when learning is impaired ,
either because regional resources are not recruited enough,
or because they are recruited at the wrong time.
Expert 2: To show that certain patterns of reorgani-
zation are associated with recovery of language function,
whereas other patterns are associated with persistent deficits.

What kind of data do you work with most often in your
research?
Expert 1: MRI imaging data. The data are dicom images
that get converted to other formats (e.g., nifty format) and
are processed in multiple ways to produce analyzable data.
FMRI data is 4-D data. DTI data is 3D data.
Expert 2: In descending order, fMRI, behavioral measures

of language function, structural MRI, DTI, ASL perfusion.

How do you gather or generate this data?
Expert 2: MRI scanner, record and analyze interactions
with patients

How is this data used/analyzed?
Expert 1: There are two basic steps for all imaging analysis.
1) preprocessing that converts native data into other formats,
removes signal variation that are not of interest and/or are
confounding (e.g., movement, alignment, spikes, slow drift).
2) statistical analyses of the preprocessed data. For func-
tional imaging, this involves statistical procedures designed
to detect signal variation associated with task performance
and possibly additional statistics that look for associations
with behavioral performance metrics, group differences,
and other conditions.
Expert 2: Changes in neuroimaging measures over time are
correlated to changes in language measures.

What visualization tools/techniques do you use to help
make sense of this data?
Expert 1: The primary tools we use are visualization com-
ponents available in AFNI, FSL, SPM software programs.
These are all freely available and include analysis software
and limited visualization tools. We also use Almryde’s nifti
viewer
Expert 2: AFNI, MRIcron, MATLAB (custom scripts)

What visualization tools/techniques do you use to display
the data and/or communicate with other experts in your
field?
Expert 1: Publications still use 2-D images primarily.
However, journals are now offering 3-D on-line viewers
that authors can upload their data into. No one offers a 4-D
viewer yet.
Expert 2: Exactly the same.

What type of visualization tools / techniques would you
like to see which could help you make better sense of
your data
Expert 1: I would like to be able to marry data obtained
from different imaging techniques (e.g., structural MRI,
fMRI, DTI tractography) into one 4-D viewer. I would
also like to link other statistical data (e.g., magnitude data)
and graphic displays (e.g., bar or line graphs) with the
underlying data within a brain region.
Expert 2: I wish there was a tool that combined the best
features of AFNI and MRIcron. i.e. the way AFNI handles
4D data is very nice (showing plots of time series for each
voxel, etc.), whereas MRIcron excels in overlaying multiple
functional images, and in 3D surface renderings.
I also wish that my image viewing tool would generate
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publication-quality images without having to use photo-
shop/illustrator to put figures together.
I wish I could save a "view" which would be a set of
images/overlays/etc, to come back to later.
It would be nice to have better tools for model diagnostics,
i.e. seeing how well the GLM fit the data in different voxels.
I wish it were easier to combine data from multiple modal-
ities, i.e. easily turn layers on and off, derive RGB values
from images of multiple types, etc.

Do you find Direct Volume Rendering visualizations of
the brain (Such as the NifitViewer) are useful, or are they
just another pretty picture?
Expert 1: This can go either way. For many very basic stud-
ies that use simple analyses and study one fairly static phe-
nomenon, I think it is probably just a pretty picture for those
of us who really have a strong internal reference for the 3-
D brain. I think as we begin to exploit the time parameter
more in fMRI research (this is coming), this will become
more important because it is hard to get your mind around
both regional and timing changes at the same time without a
viewer.
Expert 2: Surface renderings as in MRIcron are a very use-
ful way of getting overviews of patterns, and sometimes of
presenting those patterns in a straightforward way in publi-
cations.

Do you employ any tools which allow you to visualize
temporal changes in the brain? If so, what are they and
what about them do you find useful?
Expert 2: AFNI for raw temporal changes. Any functional
image is derived from temporal changes of course. AFNI
is good for temporal changes because it lets you plot the
timecourse of any voxel, or small region of voxels, etc.

How do you feel about neuro-imaging tools being de-
ployed online rather than locally like a traditional ap-
plication? Assuming the application and work with your
data locally, rather than making you upload it to some
strange server, etc, do you feel there would be an ad-
vantage to having web based neuro-imaging tools/visual-
analytic tools?
Expert 2: For most tasks, I think the best setup is a lo-
cal system in which updates are deployed seamlessly, i.e.
debian/ubuntu. I don’t really understand what software de-
ployed online would gain you if the data is local anyway. I
can see some situations in which very computationally inten-
sive analyses could be performed in a cluster by some online
tool, but that would require uploading your data.
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