

WebGL Audio API for 3D Graphics in Three.JS
Igor Fortel

ifortel@gmail.com

Abstract
As a field, web design and development has come a long way in the last 20 or so years. Amongst the biggest
leaps that have been made concern 3D graphics. Computer hardware is becoming increasingly powerful
and with that increasing computer and graphics processing power. This allows for developers and
computer scientists to get very granular about what we are able to see and change from a computer
graphics perspective, isolating and manipulating individual pixels. The same advances can be extend to
audio processing and usage for web development. Three JS is used in conjunction with the Web Audio API
to create a cube of random color, that would scale based on the frequency of the music frame as
determined by the analyzer. Future work in this area may use the Audio API to achieve a more real time
processing for video as well since audio is obviously a part of video encoding. The possibilities don’t stop
there, what if we could create a database of real-life audio sounds, and query them to create new and
exciting music. This is a very simple stripped down example, however the ideas discussed and the tools
used are very powerful.

1. Introduction
 Since the creation of computers, technology
started with two-dimensional text graphics, very
simple renderings of text. The next step in the
evolution was two-dimensional graphics, the advent
of computer video games propelled computer
graphics even further and showed the world that there
was even further that we could go. Three dimensional
visualization is the latest evolution of Computer
Graphics. We live in a 3D world but we have not
been able to create a perfectly realistic rendering of
the world for with computer graphics technology. To
this end, over the last few years, with the increase in
computer power and graphics processing power,
there has been a growing interest in technologies
whose purpose is to present Web 3D scenes in
realistic format.
Creating 3D graphics really started to take off in
1995, when HTML gave birth to the first 3D graphics
language called VRML (Virtual Reality Modeling
Language) using text-based meta-language methods.
For almost 15 years, this was all that was available to
create web based 3D scenes, however in 2011, the
Kronos group developed what is now a standard for
web-based computer graphics, WebGL [1].

1.1. WebGL
WebGL is THE standard API for 3D graphics on
websites. It gives developers the ability to work with
the full power of the computer’s rendering hardware
in the browser using Javascript. The previous method
for developing 3D applications, VRML required
developers to use plug-ins or native applications, and

ask users to download and install custom software to
be able to have a hardware-accelerated 3D-Graphics
experience [2]. Essentially, WebGL is a low-level
drawng API, that takes arrays of data and a
programmed shader, and tell it to draw. It is based on
a long-standing graphics API called OpenGL.

Basic Components of a WebGL Application [2]

-‐ Create	 a	 canvas	 element	
-‐ Get	 a	 drawing	 context	 for	 the	 canvas	
-‐ Set	 the	 viewpoint	 of	 the	 camera	
-‐ Create	 	 buffers	 that	 will	 contain	 the	 data	

that	 will	 be	 rendered	 (usually	 some	
vertices)	

-‐ Create	 	 matrices	 to	 translate	 vertices	 from	
buffer	 to	 screen	 space	

-‐ Create	 shaders	 to	 exectute	 the	 drawing	
algorithm	

-‐ Set	 parameters	 for	 the	 shaders	
-‐ Draw	

WebGL allows developers to take advantage of a few
important characteristics of 3D Graphics; the vertex
shader, the rasterizer, the fragment shader, frame
buffer, and textures. Combining and manipulating
these characteristics is how 3D graphics are created.

Now, in a WebGL environment, there also exists a
way to essentially read and parse audio data. Modern
day HTML5 has two different systems for playing

sounds, the older HTML5 Audio element and the
newer Web Audio API. The original HTML5 Audio
element was developed specifically for web
development and is unfortunately, no broad enough
in its functions to be too useful for games. [3].

1.2. WebGL Audio API

Using Javascript to load and play the sounds with this
method is exactly the same as the Javascript methods
for loading images; an audio object is created, and
when it is loaded, there is an event handler to go
through a play method and set other parameters like
volume. Using this audio element tends to be
unreliable and was never fully adopted by browser
developers due to its inadequacies. Instead of trying
to break through the wall of issues with the HTML
audio element, the Web Audio API was developed to
grab control of audio on a more granular level
mathematically. The API itself is very complex and
deep enough that entire books are written on the
subject. Consider the API essentially a giant
warehouse of audio components that you can use to
generate any audio system you can think of. If it can
be made in the real world, it can be made using the
web audio API. [4] gives a similar example and takes
it one step further, mentioning that the API is
completely modular. This means that components can
be added and removed at any point in the system
creation without compatibility issues. Some examples
of creations with this API include an analog-style
synthesizer or sampler, a 3D holographic music
player, a music notation interpreter, a procedure
music generator, or a sound visualizer. For the
purpose of this paper, a sound visualizer was created
and will be explored more in a later section. The
point that we are trying to make is that by creating
this “tool box” consisting of the building blocks of
audio, it is possible to reproduce audio generated by
hardware because both are now using the same
mathematical principles.

//Loading and playing a sound using this API

Step 1: load the sound file and decode it, this
becomes a raw audio file that is called a buffer

Step 2: Append the buffer to audio effects nodes,
basically parameters and properties that can be
modified and manipulated in the code. For example,
one node could be tied to volume, another that would
be tied to pitch or bass, etc…

Step 3: Connect the last node in the effects list to the
“destination”, which is usually the playback device
being used.
Step 4: Start the Audio!

These four steps are the basis for loading and playing
sound using the Web Audio API in a WebGL
application. The way that this API is implemented,
for the purposes of this paper is using Three.JS,
which is an object-oriented JavaScrpit library for 3D
graphics. The basic procedure is to build a scene
graph out of three.js objects to represet a 3D world,
followed by rendering an image of that world. It’s
possible to also animate the drawing by modifying
properties of the scene graph between frames [3].
Using Three.JS, we can create a 3D Web computer
graphics world by creating a few parameters: Scene,
Camera, Renderer, the Object3D (Geometry,
Material, Objects, scene graph, transformations,
lights, as well as image textures and animation if that
is needed.

1.3. Three JS Audio API Example

This example comes from [5], and was modified to
get a more detailed view of the audio API being used.
We start by creating the scene, camera and renderer,
and the controls variable. Next we define the
geometry, which in this case is will be a cube. We
use a single cube in this code, however there is object
= new Array() to easily add additional object without
needing additional meshes. The cube will be of size
5,5,5 in a Phong material of random color at the point
0,0,0. The random color function will be explained
when the function is initialized. Additionally, we add
an ending node for the renderer so that there is
essentially a stopping point. Finally, for this section,
we need to add lights! Without lights, you won’t be
able to see anything. In this case, a combination of
ambient light and point light was used to obtain a
more unique metallic color.

Figure 1. Cube generated in Three.JS

var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(50,
$(window).width() / $(window).height(), 1, 1000);
var renderer = new THREE.WebGLRenderer();
var object = new Array();
var controls;

document.body.appendChild(renderer.domElement);
camera.position.z = 50;
controls = new THREE.OrbitControls(camera,

renderer.domElement);
controls.addEventListener('change', render);

var geometry1 = new THREE.CubeGeometry(5,5,5);
var material = new THREE.MeshPhongMaterial({
 color: randomColor(),
 ambient: 0x808080,
 specular: 0xffffff,
 shininess: 20,
 reflectivity: 5.5});

object[0] = new Array();
object[0][0] = new THREE.Mesh(geometry1, material);
object[0][0].position = new THREE.Vector3(0, 0, 0);

scene.add(object[0][0]);

var light = new THREE.AmbientLight(0x505050);
scene.add(light);
var pointLight = new THREE.DirectionalLight(0xffffff,
0.7);
 pointLight.position.set(0, 1, 1);
 scene.add(pointLight);
 pointLight = new

THREE.DirectionalLight(0xffffff, 0.7);
 pointLight.position.set(1, 1, 0);
 scene.add(pointLight);
 pointLight = new

THREE.DirectionalLight(0xffffff, 0.7);
 pointLight.position.set(0, -1, -1);
 scene.add(pointLight);
 pointLight = new

THREE.DirectionalLight(0xffffff, 0.7);
 pointLight.position.set(-1, -1, 0);
 scene.add(pointLight);

Next we need to set up the render function to bring
our variables to life on the screen. In this case the
animation formula is also set up such that for all the
object, the scale changes based on the frequency of
the current frame coming from the music audio file.
The render function is also important as it also

generates the scene, the camera, and the controls.
Also included is the function to generate a random
color.

var render = function () {

if(typeof array === 'object' && array.length > 0) {
var k = 0;
for(var i = 0; i < object.length; i++) {

for(var j = 0; j < object[i].length; j++) {
var change = (array[k] + amp) / 30;
 object[i][j].scale.z = (change < 1 ? 1 :
change); object[i][j].scale.x = (change < 1 ?
1 : change);
 object[i][j].scale.y = (change < 1 ? 1 :
change);
k += (k < array.length ? 1 : 0);}
 requestAnimationFrame(render);
 controls.update();
 renderer.render(scene, camera);};
 render();
 renderer.setSize($(window).width(),
$(window).height());

function randomColor() {
var letters = '0123456789ABCDEF'.split('');
var color = '#';
for (var i = 0; i < 6; i++) {
color += letters[Math.floor(Math.random() * 16)];}
return color;}

Lastly, we generate the audio data and the usage of it.
The API handles audio inside an “audio context”,
with modular routing. This gives the developer the
ability to create very complex effects using
interchangeable layers of audio. There are really four
items that are needed to analyze the audio data and
render the scene: the audio context, the analyser, the
Javascript node, and of course the buffer source. We
also need to define a script processor, which is an
audio processing node so that we can process the
audio in Javascript. Lastly, we define a source buffer
which essentially holds the song so that the analyser
can decode the source buffer and provide information
in real-time so that the scene can be rendered
properly. Essentially, everything is ready to go once
the src buffer is connect to the analyser, which in turn
needs to be connected to the Javascript node and
source buffer to the output [audio visualization with
web Audio and Three JS]. Once all of that is done,
we are ready to go. There are many different
parameters that could be added an manipulated
further, but these 4 items are the main core of what is
needed to add audio to 3D graphics in Three.JS.

In this example, for every frame of audio, we put the
frequency of the audio frame into an array to be used
by the renderer later. Each frequency is called an
“amplitude” value and the visual effects are tied to
that amplitude value. Lastly in this example, a few
additional features were added such as a Play button,
and some fadeout for the music to not come in so
abruptly.

 // Audio
var context;
var src, srcJs;
var analyser;
var url = 'data/Drive It Like You Stole It -
Glitch_Mob.mp3';
var array = new Array();
var amp = 0;

var interval = window.setInterval(function () {
if ($('#loading_dots').text().length < 3) {
$('#loading_dots').text($('#loading_dots').text() + '.');}
else {$('#loading_dots').text('');}}, 500);
 try {
if (typeof webkitAudioContext === 'function' ||
'webkitAudioContext' in window) {
context = new webkitAudioContext();}
 else {
context = new AudioContext();}}
 catch (e) {$('#info').text('Web Audio API is
not supported in this browser');}

var request = new XMLHttpRequest();
 request.open("GET", url, true);
 request.responseType = "arraybuffer";

request.onload = function () {
context.decodeAudioData(
request.response,

function (buffer) {
if (!buffer) {
$('#info').text('Error decoding file data');
return;

srcJs = context.createScriptProcessor(2048, 1, 1);
srcJs.buffer = buffer;
srcJs.connect(context.destination);

analyser = context.createAnalyser();
analyser.smoothingTimeConstant = 0.6;
analyser.fftSize = 512;

src = context.createBufferSrc();
src.buffer = buffer;
src.loop = true;

src.connect(analyser);
analyser.connect(srcJs);

src.connect(context.destination);
srcJs.onaudioprocess = function (e) {

array = new Uint8Array(analyser.frequencyBinCount);
analyser.getByteFrequencyData(array);
amp = 0;

for (var i = 0; i < array.length; i++) {
 amp += array[i];}
 amp = amp / array.length;
 };
// popup
$('body').append($('<div onclick="play();" id="play"
style="width: ' + $(window).width() + 'px; height: ' +
$(window).height() + 'px;"><div
id="play_link"></div></div>'));

$('#play_link').css('top', ($(window).height() / 2 -
$('#play_link').height() / 2) + 'px');

$('#play_link').css('left', ($(window).width() / 2 -
$('#play_link').width() / 2) + 'px');
$('#play').fadeIn(); },
function (error) {

$('#info').text('Decoding error:' + error);};
request.onerror = function () {
$('#info').text('buffer: XHR error');};

request.send();

function displayTime(time) {
if (time < 60) {
return '0:' + (time < 10 ? '0' + time : time);}
else {
var minutes = Math.floor(time / 60);
time -= minutes * 60;
return minutes + ':' + (time < 10 ? '0' + time : time);}

function play() {
$('#play').fadeOut('normal', function () {
$(this).remove();});
src.start(0);}

$(window).resize(function () {
if ($('#play').length === 1)
{$('#play').width($(window).width());$('#play').height($
(window).height());
if ($('#play_link').length === 1) {
$('#play_link').css('top', ($(window).height() / 2 -
$('#play_link').height() / 2) + 'px');
$('#play_link').css('left', ($(window).width() / 2 -
$('#play_link').width() / 2) + 'px');}}});

2. Discussion

We can see how simple it is to take an audio mp3
file, decode it, and create 3D graphics based on that
audio file. It’s easy to see how this can be expanded
on to bigger and better ideas. The Audio API is also
used in web video games for reat time audio
implementation and analysis. Additionally, we’ve
been able to implement a combination of audio file
input with a microphone input as well. Adding a
listening microphone is a slightly more challenging
effect, however it can be done by following many of
the same steps mentioned above. The mic becomes
the source of the data, however since it is being
captured in real time, we need to have a function that
not only uses the audio data, but also captures and
stores it to be processed. An example of this can be
seen below as seen in [6]. On research area that can
be explored is to reverse-engineer music using this
approach. By creating a database of frequencies and
notes, we could potentially create random or
analytically generated music using the approach that
we have for microphone data collection. We have
come extremely far in terms of 3D graphics and
audio implementation, but there is still much more
room to grow towards an effective and efficient real-
time graphics rendering.

var $player = $("#player");
$player_source = $player.get(0);
// Creates the analyser

 analyser2=context.createAnalyser(
analyser2.fftSize = 2048;

 frequencyData2 = new
Uint8Array(analyser2.frequencyBi
nCount);

bufferLength =
analyser2.frequencyBinCount;cons
ole.log(bufferLength);

 source_mic=
context.createMediaElementSource
($player_source);

 source_mic.connect(analyser2);

////////////////////////////// Data Array
for capturing///////////////////////////
var $data = [];
var $audioData = []
 function makeArray($data){

if($dataArray == undefined){
var $dataArray = [$data];}
else{
$dataArray.push($data);}
return $dataArray; }

function capture(data) {

source2=
context.createMediaStreamSource(
data);
audio_data = data;
analyser2=context.createAnalyser()
.
// Create the array for the data
values
analyser2.getByteFrequencyData(fr
equencyData2);
var realtimeData = new
Uint8Array(analyser2.frequencyBi
nCount); // Now connect the nodes
together
// Do not connect source node to
destination - to avoid feedback

source2.connect(analyser2);
analyser2.connect(processor);
processor.connect(context.destinati
on);
 }

3. References

1. Stamoulias, Andreas, Eftychia Lakka,
and Athanasios G. Malamos.
"“Wrapping” X3DOM around Web Audio
API." International Journal of Artificial
Intelligence and Interactive
Multimedia 3.Regular Issue (2015).

2. Parisi, Tony. Programming 3D
Applications with HTML5 and WebGL:
3D Animation and Visualization for Web
Pages. " O'Reilly Media, Inc.", 2014.

3. Spuy, Rex van der. "Advanced Game
Design with HTML5 and Javascript."
(2015).

4. GraphicsNotes 2013 -- Section 15:
Introduction to Three.js. (n.d.). Retrieved
December 14, 2015, from
http://math.hws.edu/eck/cs424/notes201
3/15_Threejs_Intro.html

5. Experimenting with Web Audio API
Three.js (WebGL). (n.d.). Retrieved
December 14, 2015, from
http://srchea.com/experimenting-with-
web-audio-api-three-js-webgl

6. (n.d.). Retrieved December 14, 2015, from
https://gist.github.com/webapprentice/82228
32.js

