
3D Software Interpretation of Reas’s Processes

Tomasz Sebastian Rybiarczyk

University of Illinois at Chicago
Dept. of Computer Science
Chicago, IL, United States

trybia2@uic.edu

ABSTRACT
The emergence has long been a fascinating process exploited
in arts and sciences. Casey Edwin Barker Reas heavily builds
upon this phenomenon in his creations, where the composi-
tions of various forms and behaviors give rise to images of
highly distinct and mesmerizing shapes. This work describes
an attempt to extend his work to the third dimension. Pre-
sented are the design decisions and trade-offs that had to be
taken to best approximate the original work in 3D. The imple-
mentation of the work is also detailed to provide insights into
presenting the process of emergence in interactive framerates.
Selected original works are compared against the results as a
mean of evaluation.

ACM Classification Keywords
I.3.3. Computer Graphics: Picture/Image Generation

Author Keywords
Computer Graphics; Design; Performance

INTRODUCTION
The notion of emergence has a long history. It was as early
as the 19th century when John Stewart Mill claimed that a
combined effect of several causes cannot be reduced to its com-
ponent causes [3]. Steven Johnson in his book, "Emergence",
gives the defines the emergence as follows:

In the simple terms (emergent systems) solve problems
by drawing on masses of relatively stupid elements, rather
than a single, intelligent "executive branch". They are
bottom-up systems, not top-down [3].

Many people, inspired by the idea of emergence began pro-
ducing work of art incorporating it. The phenomena found its
outlets also in computer-generated art. Casey Reas is another
artist who grasped the concepts of emergence, defined a num-
ber of processes and developed software to produce 2D images
which are "software interpretation of Process descriptions" [6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.

Despite the fascinating effects that come to life from vari-
ous software interpretations authored by Reas, there was no
attempt to interpret his descriptions in a three dimensional
universe. This paper documents the first such attempt. Early
experiments were meant to approximate the original work as
close as possible. Additional goal was to allow the viewers to
observe the emergence process from any perspective in inter-
active framerates. This early work produced quite promising
results.

The paper provides brief introduction to th original work of
Casey Reas. Next, it documents the issues we considered
when extending the original work to 3D. The implementation
considerations in sufficient detail are also provided. Lastly,
we present our results and compare them to images of Reas’s
original work (Figure 2).

ORIGINAL WORK
Casey Reas’s vast portfolio contains many distinct composi-
tions. Each one of them represents software visualization of
various phenomena and draws inspiration from many sources.
In this paper we focus on the series of Processes, composed of
many Elements, which in turn encompass Forms and Behav-
iors. The definitions are provided in the following subsections.

Process Definitions
Reas describes the Element as a machine composed of a Form
and one or more Behaviors. The most common Forms in his
work are circles and lines. Behaviors determine how the El-
ement reacts certain events such as collisions (and overlap)
with other Elements, collisions with universe boundaries, ad-
vancement paths. The Process is an environment for Elements
and describes how to visualize the interactions between the
Elements and other events involving the Elements in a uni-
verse. The description of each Process is given in English and
its interpretation is left for the programmer.

Examples
For completeness, several Processes are described below.
These descriptions are taken directly from Reas’s Process
Compendium text [6]. Their original software interpretations
are illustrated in Figure 1.

• Process 4 - A rectangular surface filled with varying sizes
of Element 1. Draw a line from the centers of Elements
that are touching. Set the value of the shortest possible



(a) Process 4 (b) Process 10 (c) Process 18

Figure 1: Original software interpretation of selected Processes

line to black and the longest to white, with varying grays
representing values in between.

• Process 10 - Position a circle at the center of a rectangular
surface. Set the center of the circle as the origin for a large
group of Element 1. When an Element moves beyond the
edge of its circle, return to the origin. Draw a line from the
centers of Elements that are touching. Set the value of the
shortest possible line to black and the longest to white, with
varying grays representing values in between.

• Process 18 - A rectangular surface filled with instances of
Element 5, each with a different size and gray value. Draw
a quadrilateral connecting the endpoints of each pair of
Elements that are touching. Increase the opacity of the
quadrilateral while the Elements are touching and decrease
while they are not.

CROSSING THE DIMENSION BOUNDARY
As noted by Reas, it is up to an individual how one interprets
the Process description. It becomes apparent that extending
the ideas to the third dimension, there are even more occasions
to employ personal judgment on design. This section explains
some of the notable difficulties that had to be addressed in the
process.

Representation in 3D
Due to the fact that the work is the first attempt in 3D interpre-
tation of Reas’ work, it was of great importance to retain the
same interface for producing the images. As the original work
involves drawing lines for the most part, the same primitive
is used in this work. As seen in the previous section, some
Elements consist of circles and the other consist of lines. In
this approach, for obvious reasons, the use of circles was sub-
stituted with spheres. The use of lines remained in place for
other Forms.

Interpretation of Process Text for 3D
An additional design decision that had to be taken was the in-
terpretation of some of the Behaviors. For instance, Behavior
3 changes a direction of the Element. It is not obvious how the
direction should be modified in this case. In the original work,
as shown in the Compendium Lecture video [5], rotates the

Elements clockwise at the same constant rate. In 3D however,
this kind of behavior would not result in a desired effect. Our
approach generates normal vector for each pair of colliding El-
ements. Cross product of the normal and the direction vectors
is computed to produce the tangent. This vector then serves
as an axis around which the direction vector is rotated. The
angular velocity is kept constant for all Elements in a Process
but it is assigned different value on per process basis.

Behavior 4 moves the Element away from an Element it over-
laps. While this description seems straight forward, in practice
it is not known at what rate should the Elements be pulled
away from each other and how does this rate correspond El-
ements’ velocity. It is also important to maintain the overlap
state for a certain duration in order to produce meaningful re-
sults in context of visual representation. In our approach, each
Element maintains a list of elements it collides with in current
discrete step. The list capacity is limited to a certain number
(currently 4) so that some amount of overlap conditions occur.
The mean of the directions from current Element to colliding
Elements is computed and used to translate current Element
with speed proportional to the magnitude of its velocity. This
interpretation was found to provide a nice balance between the
number of overlap conditions and the efficiency constraints
presented in the following subsection.

Outside the Behavior description realm there is also one other
way that influences the emergence significantly: some Pro-
cesses move the Elements to the center, once they collide the
bounding surface. This is where our implementation violates
the description in order to throttle the amount of lines drawn.
Instead, the spawning position for Elements are moved further
away from the origin with each generation step. The rate at
which this happens is an arbitrary value that yields the best
visual result.

Differences
The fact that the original work produces images on a two
dimensional surface signifies that the results of each gener-
ation steps are accumulated in the framebuffer according to
the blending equation being used. The technique revolves
around keeping the framebuffer contents from frame to frame.
As a consequence of this, the drawing routines are relatively



inexpensive operations since they must render only the results
of the latest generation step. Our technique, however, must
maintain all the geometry produced in the past steps to allow
viewing from different perspectives. This implies drawing
increasingly large number of simple primitives. In order to
handle the task efficiently, it is necessary to allocated large
buffers on the gpu and update them with latest results. Section
4 covers this approach in a greater detail. The immediate steps
that can be taken to combat efficiency issues are to throttle the
amount of lines being generated at each step.

Through experiment and observation, several factors that di-
rectly influence the number of lines being produced were
identified. These factor include but are not limited to the
number of Elements, the size of the bounding volume, the
velocity of Elements and the initial positions of the Elements.
Several of these issues have been addressed by the means of
assigning different fine-tuned parameters for different types
of Processes. Assigning arbitrary values to these parameters
can have a negative impact on the quality of the visualization.
The following subsection details a way to counter some of the
negative impact.

Transparency
The great part of the aesthetic quality of the original work can
be attributed to how the results of each generation step are
combined with contents already present in the framebuffer. In
this case, the results are simply drawn on top with varying
opacity levels. Since the generation takes place on a two di-
mensional surface, there is no notion of depth in such context.
In 3D, however, in order to best approximated the transparency
effect, it is necessary to take into account the order in which
the Elements are drawn. It is apparent that due to the over-
whelming amount of lines being drawn at any time, all the
traditional methods of organizing geometry in a 3D scene be-
come ineffective due to the large overhead of rebuilding the
space partitioning tree structures. As noted previously, one of
the goals is to allow observing the emergence process from
any perspective in interactive frame rates.

Several alternative approaches in the domain of Order Inde-
pendent Transparency (OIT) were considered. The A-Buffer
approach by Carpenter [2] or any approach that maintains
fragment lists is impractical due to high depth complexity of
the scene we are trying to render. Similar issue affects depth
peeling since it generally requires a large number of rendering
passes, proportional to depth complexity [1]. McGuire and
Bavoil describe an approach that require only two passes but
the expectation is that the data we to be blended already exists
in offscreen buffers [4]. We finally settled for an easy and
straight forward approach of using a commutative blending
equation, described by Sellers [7].

With simply adding the source and destination colors, we
were able to achieve arguably convincing transparency effect.
For effectiveness, it is necessary to choose colors with low
per-channel intensity as to not cause the color clipping. We
found it benefiting to express color in HSL. This way the light-
ness component corresponds to the opacity value in traditional
blending. Also, adjusting lightness to an appropriately high
value can greatly reduce the amount of lines that need to be

blended together. This consequently allowed to reduce the
number of Elements and increase performance. Additional de-
sign choice was to express varying gray levels (as required by
most of the Process descriptions) with varying hue component.

IMPLEMENTATION
Our work was implemented using OpenGL graphics
API. For efficiency purposes it heavily relies on hard-
ware instancing an thus requires ARB_draw_instanced and
ARB_instanced_arrays to be available. Any implementation
and supporting version 3.3 Core of the the API satisfies this
requirement. Depending on the Process, different sizes of per-
instance attribute buffers are allocated. The sizes vary from
50 thousand to 5 million. Some implementations such as Intel
Mesa may not support this many instances per call.

Collision detection is deferred to Bullet Physics. Depending
on the type of the Form the Elements use, either sphere or
cylinder collision shapes are employed.

CONCLUSIONS
In this work we have attempted to extend the original work
of Casey Reas to the third dimension. Several Processes have
been selected and implemented to approximate the original
effect. Numerous design choices and reinterpretations had
to be taken to achieve the desired effect. Our ultimate goal
was to view the emergence process from any perspective and
observe the growth in realtime. For comparison, our work
was set aside the 2D Process visualization images. While
some of our implementations exhibit greater differences to
Reas work, we are fairly confident that additional fine-tuning
of input parameters will yield much better results. Some
differences are also due to the way the transparency is handled
in our implementation. Employing a better blending model
for our purposes will allow viewers to see much more detail
that makes the original work aesthetically appealing.

In spite of the number of issues we faced, we believe our work
has a quality on its own. It opens the gates to many more
possibilities. If all the issues we are currently experiencing are
resolved, there exist bright perspectives to transform our imple-
mentation into a toolkit for visualizing emergence processes
in 3D.

REFERENCES
1. Louis Bavoil and Kevin Myers. 2008. Order independent

transparency with dual depth peeling. Technical Report.
Nvidia. Retrieved December 2, 2015 from
http://developer.download.nvidia.com/SDK/10/opengl/

src/dual_depth_peeling/doc/DualDepthPeeling.pdf.

2. Loren Carpenter. 1984. The A-buffer, an Antialiased
Hidden Surface Method. In Proceedings of the 11th
annual conference on Computer graphics and interactive
techniques (SIGGRAPH ’84). ACM, 103–108.

3. Dan Collins. 2002. Breeding the Evolutionary: Interactive
Emergence in Art and Education. In 4th Annual Digital
Arts Symposium: Neural Network. http://www.asu.edu/
cfa/art/people/faculty/collins/emergence/emergence.htm



(a) Process 4 (b) Process 6 (c) Process 10

(d) Process 12 (e) Process 17 (f) Process 18

Figure 2: Comparison of the original (top images) and our (bottom images) software interpretations



4. Morgan McGuire and Louis Bavoil. 2013. Weighted
Blended Order-Independent Transparency. Journal of
Computer Graphics Techniques (JCGT) 2, 2 (18
December 2013), 122–141.
http://jcgt.org/published/0002/02/09/

5. Case Reas. Compendium Lecture. Video. (????).
Retrieved September 22, 2015 from
http://reas.com/compendium_lecture/.

6. Casey Reas. 2010. Process Compendium 2004-2010.
REAS Studio.

7. Graham Sellers. 2013. Order Independent Transparency.
(20 August 2013). Retrieved Decemeber 2, 2015 from
http://www.openglsuperbible.com/2013/08/20/

is-order-independent-transparency-really-necessary/.


