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Figure 1: Examples of hierarchical edge bundling on a hierarchical dataset using different tree layouts. Leaf nodes are in blue.
Bundled links are in red.

ABSTRACT

This paper introduces CactusTree, a novel visualization technique
for representing hierarchical datasets. We introduce details about
the construction of CactusTrees and describe how they can be used
to represent nested data and relationships between elements in the
data. We explain how our design decisions were informed by tasks
common to a range of scientific domains. A key contribution of
this article is the introduction of descriptive features that can be
used to characterize trees in terms of their structural and connective
qualities.
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1 INTRODUCTION

Trees are one of the most fundamental data types. However, existing
tree layout techniques are not always adequate for many real-world
datasets. Layouts that aim to visually simplify complex trees can
also make it difficult to perform common tasks, such as finding
nodes or subtrees with particular characteristics. In addition to facil-
itating reasoning about hierarchical relationships, many application
domains require the presentation of non-hierarchical relations be-
tween data items [14]. For example, in the domains of molelcular
biology, researchers analyze intracellular signaling pathways that
can be composed of nested sets of biomolecules. It is also important
to show how particular biomolecules influence or are influenced by
others [8]. Similarly, in the domain of biodiverstiy informatics, the
hierarchical structure of a phylogenic tree can usefully be overlaid
with additional information that connects nodes in the tree in order
to show, for instance, properties of a food web [26]. Many other
examples can be found in real-world datasets.

Rather than investigating the bundling techniques themselves, as
most existing approaches [1, 16, 21] have attempted, we explore the
effective use of tree layouts to support hierarchical structure recogni-
tion and to minimize ambiguity introduced by bundling cross-edges
(also called non-hierarchical connections/links in this paper). Based
on our analysis of important features of tree layouts, we propose a

*e-mail: tommy.dang@ttu.edu
†e-mail: aforbes@uic.edu

new tree layout— CactusTree— for visualizing the structure and
connectivity of nested trees.

2 RELATED WORK

This paper introduces a new tree visualization technique with the
specific goal of untangling overlaid bundles of intersecting edges.
That is, we aim to address the problem of collinearity, discussed
in the original paper on hierarchical edge bundling [14]. Here, we
discuss relevant work related to tree visualization and edge bundling.

2.1 Tree Visualization Techniques
A wide range of tree layouts have been introduced as general tech-
niques to encode hierarchical data and in support of specific tasks.
Schulz [27] maintains Treevis.net, a comprehensive website that de-
scribes of a large number of tree layouts (292 in total as of February
2017) gathered from conference proceedings and journal articles.
Each of these layouts have advantages and disadvantages when used
for particular tasks.

A TreeMap [29] is a space-filling technique that maps a hier-
archical dataset onto a rectangular region. The effective use of
space enables comparison of attributes of leaf nodes such as size
and color coding, and therefore helps to highlight patterns and out-
liers in large hierarchies. Clever variations of TreeMaps, including
MartketMap [32] and Squarified TreeMaps [5], ensure low aspect
ratio rectangles (where most rectangles are nearly square) replacing
the “slice-and-dice” method used in the original TreeMap layout.
Cushion TreeMaps [31] add intuitive shading to help improve the per-
ception of hierarchical structure. Arbitrary polygons [2] and circular
glyphs [11] can be used instead of rectangles to create more visually
attractive and useful layouts. Despite their popularity, TreeMaps
can be difficult to decipher in some situations, such as when used
to represent deeply nested hierarchies. ArcTrees [24] is one of the
early efforts to overlay non-hierarchical links onto TreeMaps.

Kruskal and Landwehr introduce Icicle Plots [18], which encode
hierarchical data by stacking child rectangles directly on top of
parent nodes. This makes it easier to see the hierarchical structure,
but also assigns valuable screen space in assigning large areas to
intermediate nodes. When using Icicle Plots to represent dense
datasets that contain a large number of leaf nodes, the leaf nodes can
be pushed close together, making them hard to see.

Beck et al. [3] introduce a generalization of Bosman’s Pythagoras
Trees to visualize arbitrarily branching hierarchical structures. Each



node in the hierarchy is represented as a rectangle which is sized
based on the collective size of its children. Colors are used to encode
the depth of nodes inside the hierarchy. This tree structure can also
take a variety of forms that are created by adjusting different param-
eters such as length, width, order, and color. While this technique
has an appealing aesthetic quality, the gaps between areas repre-
senting hierarchical structure may interfere with how users perceive
non-hierarchical connections between nodes.

Kobsa [17] describes a study to compare several well-known
information visualization systems for tree hierarchies in a between-
subjects experiment. The study showed a significant difference
in completion times and correctness between structure-related ver-
sus attribute-related tasks on various tree layouts. McGuffin and
Robert [22] presents an in-depth survey of tree layouts that intro-
duces a range of metrics to define the information density of different
tree layouts. These metrics provide design guidelines for the use of
layouts for certain tasks, such as maximizing space-efficiency and
supporting labeling.

2.2 Hierarchical Edge Bundling

Holten introduces hierarchical edge bundling (hereafter, HEB) [14],
a technique to group links between adjacent edges by routing them
through parent nodes in order to re-enforce the hierarchical structure
of the data. HEB is a widely used technique that is used for a range of
applications, and has also been extended for particular contexts. For
instance, to make it possible to “bundle” the edges without requiring
a control mesh [6] or hierarchy, Holten and van Wijk [15] use a self-
organizing algorithm. In this approach, edges are modeled as flexible
springs that can attract each other while node positions remain
fixed. Various factors, such as translucency [21], color [16], and
depth effect, can be considered to aid in the perception of bundles.
However, HEB is most often used as originally described [14], and
is readily available for some layouts via visualization toolkits, such
as D3.js [4].

To the best of our knowledge, somewhat surprisingly, HEB
has not been evaluated systematically. In a survey paper on edge
bundling techniques, Zhou et al. [34] summarize some studies of
HEB, which tend to indicate user preference for visualizations that
use HEB in comparison to those that do not. Xu et al. [33], while not
explicitly focused on HEB, examine visualizations that use varying
degrees of curvature, finding that links with high-curvature can ad-
versely affect how well users interpret data. Bach et al. [1] investigate
Confluent Drawings [9], a technique for bundling edges in node-link
diagrams based on network connectivity. The authors also present a
user study that compares edge-compression techniques, including
Confluent Drawings, power graphs [10], ordered bundles [25], and
edge bundling.

McGee and Dingliana [21] perform user experiments to evaluate
the impact of bundling on user performance on different tasks using a
set of randomly generated undirected compound graphs with varying
sizes and edge densities. In their study, graphs are presented with a
range of different levels of edge bundling using a simple balloon tree
layout. Within the context of their experimental setup, their results
indicate that bundling can actually hinder users in path tracing tasks,
both in terms of accuracy and completion time.

3 OVERVIEW OF VISUALIZATION TASKS

There are many tasks related to visualizing compound graphs in a
range of scientific domains, including those that involve biological
pathways [20], ontology alignment [23], and taxonomic classifica-
tions [7]. Through in-depth discussions with systems biologists, tax-
onomists, and ontology researchers, we identified two primary tasks
important for visual exploration of hierarchical datasets: character-
izing hierarchical structures and identifying connections between
nodes in the hierarchy [19].

T1: Effectively characterize hierarchical structure—Biological
pathways are usually composed of a number of sub-pathways, them-
selves containing other sub-pathways and biochemical reactions
between elements within them. It is not uncommon for this nested
structure to have a depth of more than ten levels [12, 30]. More im-
portantly, these classifications (hierarchies) may change from year
to year as new discoveries or interpretations are made [13].
T2: Minimize ambiguity introduced by edge bundling—HEB
trades details for overview. In other words, following an edge from
its source to its target can lead to the perception of incorrect con-
nectivity if edges are not clearly separated within the bundles [1].
An ideal tree visualization technique to best support HEB should
minimize this loss.

3.1 Classifying Layouts to Support Visualization Tasks
Schulz [27] classifies tree layouts in terms of three main features,
based on their structural layout: dimensionality (2D or 3D), repre-
sentation (explicit or implicit), and alignment (axis-parallel, radial,
and free). Schulz et al. [28] further propose a generic tree layout
pipeline to produce both implicit and explicit tree layouts. In this
paper, we focus on layouts that support our primary tasks when ap-
plied to complex, real-world datasets. We look only at 2D graphical
representations of tree structures (3D tree layouts are less popular
and evaluating 3D tree layouts would require a more extensive in-
vestigation of interactions, such as rotating, panning, and zooming).

Node-link vs. containment vs. stacking
This describes the encoding of a parent-child relationship by either:
(a) drawing a link (node-link, such as in Classic trees or Radial
trees); (b) nesting children within the parent (containment, such as
TreeMaps or Balloon layouts); or (c) having a spatial area of the
child abut its parent (stacking, such as Icicle plots).

Root-centric vs. parent-centric
In root-centric layouts, all layout operations are made w.r.t. the
tree’s root. In parent-centric layouts, all layout operations are made
w.r.t. a node’s parent [28]. Fig. 2 shows an example of root-centric
and parent-centric layouts. Icicle and CactusTree drawing strategies
are very similar: child nodes are stacked directly on their parent
nodes. However, the width of leaf nodes in Icicle plot (left) is equally
divided based on root width, while child nodes in CactusTree are
stacked along the half-arcs of their parent center with an assigned
orientation (the alpha input parameter in Algorithm 1), and thus
produces a parent-centric layout.

Figure 2: We hypothesize that bundled cross-edges in a parent-centric
layout (right) are more discernible than a root-centric layout (left). The
hierarchy in this example is the animate subpackage structure within
the flare software project. Each blue leaf node represents a source
code file. Red links depict how these files refer each other.



4 THE CactusTree LAYOUT

We designed the CactusTree layout based on the following two
observations:

• CactusTree is a fractal-based technique which recursively stacks
child nodes on top of their parent. Fractal appearance trees are
aesthetically appealing [3] and similar to natural structures such
as trees, leaves, ferns, clouds, coastlines, or mountains. Therefore,
they characterize hierarchical structures effectively and are easy to
remember, supporting T1.
• Longer paths with hairpin curves require more effort to trace.

For example, in Fig. 3(a) the straight black link is much easier to
trace than the red link [21], which is again easier to trace than the
blue link. Fig. 3(b) compares an example of HEB on a circular (e.g.,
CactusTree) layout with a linear (e.g, Icicle Plot) layout. In this
simple example, the black parent node contains 6 child nodes evenly
distributed circularly (red nodes) or linearly (blue nodes). The blue
bundled link connecting two center neighboring nodes in the linear
layout has a sharper turn compared to the red bundled link in the
circular layout. In Fig. 3(c), we show the two neighboring nodes on
the right; the blue link is not only sharper but also longer than the
red link. Moreover, when we compare Fig. 3(b) and (c), the turning
angles and the lengths of two red links are the same while they are
both different for two blue links. Consequently, we prefer a circular
layout rather than a linear layout for T2.

Figure 3: We hypothesize that shorter links, with less sharp turns
require less effort to understand. Examples of HEB using a circular
vs. linear arrangement: in (a) the blue link requires more effort to
trace than red link since the eye has to travel further to verify the
connection; in (b) the blue link has a sharper turn than red link; in (c)
the blue link is not only sharper but also longer than the red link.

Based on our analysis of and hypotheses about the above tree lay-
out qualities, we introduce CactusTrees to support the two primary
analysis tasks discussed in Section 3. Since drawing explicit links
between parent and child nodes may generate visual confusions with
cross-edges, we use stacking (touching) to represent parent-child
relationships in our proposed tree layout. Specifically, each inter-
mediate node in CactusTree is represented as a circle. Child nodes
are stacked along the circular half-arcs of their parent node. In other
words, child node distribution is calculated w.r.t its parent location
and orientation (parent-centric layout). Therefore, any duplicated
subtrees have stable shapes regardless of its location within the
tree. Moreover, the circular distributions of child nodes around their
parents potentially allow wider turns when bundling cross-edges in
the tree layout. We use shadings to indicate depth of a node within
the nested structure. The darker the circle, the deeper it is in the
hierarchy; leaf nodes are given a distinct color (blue).

The construction of CactusTree layouts is summarized in Algo-
rithm 1. The algorithm first orders the child nodes of the current
node by their weights. The total weight for a node is the sum of all
immediate leaf nodes, each given a weight of 1, plus the weights
of each of its subtrees (recursively calculated). We then call Algo-
rithm 2 to produce a second ordering in which the maximum weight
subtrees are put in the center of the list, while leaf nodes are dis-
tributed equally on both sides. Algorithm 2 simply adds an ordered
node list into the middle of a new array list (initialized to be empty).
Since maximum weight subtrees are in the center of the array list,
we make sure that the tree grows upward. The radius of each node

Algorithm 1 CactusTree Layouts
procedure DRAWCactusTree(currentNode, x, y, al pha)

Let childList be the list of children of the current node
// Measure weight of the current tree, each leaf node weighs 1
totalWeight = 0
for each child in the childList do

totalWeight += weight(child)
// Draw a circle at (x,y) with radius returned from getRadius
DrawCircle(x, y, getRadius(totalWeight))
// Sort childList: leaf nodes first then larger subtrees
orderedList = sortChildNodesByWeight(childList)
// Order sibling nodes: larger subtrees are put in the middle
centeredList = orderMaxInCenter(orderedList)
for each child in the centeredList do

al pha += (weight(child)/totalWeight)/2
x2 = x+getRadius(weight(child))*cos(al pha)
y2 = y+getRadius(weight(child))*sin(al pha)
// Draw subtrees by calling Algorithm 1 recursively
DrawCactusTree(child, x2, y2, al pha)
al pha += (weight(child)/totalWeight)/2

Algorithm 2 Order sibling nodes: maximum weight in the center
procedure ORDERMAXINCENTER(orderedList)

Let centeredList be an empty array list
// Keep adding the ordered nodes to the middle of centeredList
for each node in the orderedList do:

centeredList.add(centeredList.size/2, node)
return centeredList

Algorithm 3 Get radius of a node based on its weight
procedure GETRADIUS(weight)

// Define scale factor between parent and child nodes
var scaleFactor = 0.75
return Math.pow(weight, scaleFactor)

is computed based on its calculated weight (number of leaf nodes)
in the current subtree using Algorithm 3.

5 CASE STUDY

CactusTree supports a range of interaction capabilities to help a user
focus on a substructure of interest. Fig. 4 shows an example of
zooming into a subtree (on the right) of the flare package hierarchy
(on the left). Users can expand/collapse a branch of a tree by a
simple click.

Figure 4: Zooming into a CactusTree to see details about substruc-
tures and internal connectivity.

CactusTree also supports brushing/selecting nodes and non-
hierarchical links. Fig. 5(a) shows a subtree of the mammal hi-
erarchy, called carnivora, which contains 63 meat-eating species.
The data was downloaded from OneZoom [26] and overlaid with the



Figure 5: Visualizing carnivora hierarchy within the mammal evolution-
ary tree: (a) leaf nodes are displayed as images of species within the
carnivora hierarchy and red links depict prey-predator relationships;
(b) Selecting a leaf node canis lupus (gray wolf) highlights the direct
species in its food chain.

prey-predator data provided by taxonomy experts. In this figure, we
display the images of species within the carnivora food chain. The
red links connect predators to their preys. Fig. 5(b) shows brushing a
leaf node under the arrow, canis lupus (gray wolf). As depicted, gray
wolf is an important species in the carnivora food chain. Notably,
gray wolf eats its evolutionary sibling, canis latrans (coyote).

Since child nodes in CactusTree are stacked along the half-arcs
of their parent, every parent node has a separated entry for bundled
links to its child nodes (the entry is the center of the other half-arc).
Consequently, we can visualize interconnectivities between multiple
CactusTrees as depicted in the following Fig. 6 (which is much more
intuitive than interconnecting other layouts, such as TreeMaps or
Radial trees) . This example contains three biological pathways:

Influenza Infection, HIV life cycle, and Signaling by ERBB2 (from
left to right). Selecting the links between two pathways highlights
how they are interconnected, for example we can display which
biochemical reactions related to the causal relation between HIV
and Influenza Infection.

Figure 6: An example of multiple, interconnected trees using Cactus-
Trees to represent biological pathways.

CactusTree is implemented in Javascript using the D3.js library.
The demo, source code, and project documentation are available on
our Github repository at http://cactustrees.github.io.

6 CONCLUSIONS AND FUTURE WORK

The paper introduces a new tree visualization technique that is geared
specifically towards more effectively representing overlaid bundles
of intersecting links between nodes in the tree. We believe that this
is a noteworthy approach toward solving the problem of collinearity
that was observed in the original paper on hierarchical edge bundling
(see Fig. 17 in Holten [14]). Rather than investigating the bundling
techniques themselves, as most existing approaches have attempted,
here we have explored the potential of modifying to the underlying
tree layout.

Overlapping nodes/branches can occur in CactusTree for very
complex hierarchies. In this case, we can increase the scale factor
(in Algorithm 3) between a parent node and its children to avoid
collisions. An example of the mammal hierarchy (41 levels of depth)
with different scale factors is depicted in Figure 7. At ScaleFactor =
0.75 (the right most tree), no collisions is detected.

Figure 7: CactusTree for the mammal hierarchy with different scales
factor in computing node size.

For future work we plan to conduct more extensive studies of
HEB on different tree layouts and to look at more involved tasks on
more complicated data. For instance, we want to explicitly examine
a user’s understanding of high level inter-cluster connectivity trends
by asking the user to identify which cluster/parent node is most
strongly connected to a selected cluster/parent node. We also plan
to examine user understanding of low level intra-cluster connectiv-
ity trends by testing how well a user can identify the connectivity
within a cluster/parent node. Understanding how interactions, such
as rotating, panning, and zooming, support these tasks is also an
interesting future investigation.

http://cactustrees.github.io
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