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Abstract—A common strategy for encoding multidimensional
data for visual analysis is to use dimensionality reduction
techniques that project data with a very large number of
objects and dimensions from higher dimensions onto a lower-
dimensional space. In visual analytics tasks, the density of the
multidimensional clusters can strongly affect how these clusters
are perceived. However, this feature can be lost when that
dataset is projected into a 2D space, adversely affecting the
effectiveness of visual analytics tasks. Thus, it makes sense
to preserve, as far as possible, information about the density
during the dimensionality reduction. This paper is a study
of motion-enhanced cluster perception where the clusters are
shown in 2D scatterplots and cluster density is mapped to
the motion of the individual constituent points. We consider
different types of density-based motion, where the magnitude
of the motion is directly related to the density of the clusters.
We conducted a series of user studies with large datasets to
investigate how motion is a powerful perceptual cue well-suited
for grouping or segmenting types during perceptual tasks.
We found that the use of motion enabled users to be easily
able to distinguish between clusters with different densities.
The amount of visual change per unit time was different
for the different motions, and we describe the ranges and
thresholds for each of them. Specifically, we looked at two
projection techniques that output 2D scatterplots for a range
of data analysis tasks. We focus on high-dimensional, real-
world datasets that might require analyses involving cluster
identification, similarity seeking, and cluster ranking tasks.
Our results indicate that incorporating density-based motion
into visualization analytics systems effectively enables the
exploration and analysis of multidimensional datasets.

Keywords-Big Data, multidimensional data analysis, high-
dimensional data, projection methods, density-based motion,
user evaluation.

I. INTRODUCTION

To facilitate data analysis tasks, multidimensional reduc-
tion techniques map high-dimensional data onto a lower-
dimensional visual space in form of 2D or 3D scatterplots.
Projections using different algorithms generate scatterplots
with particular point placements as the most common vi-
sual encoding. Typically, two-dimensional visual encodings
displayed as scatter plots use similarity-based or distance
preservation layouts, utilizing a properly defined distance
metric in the given multidimensional attribute space. Data
analysis tasks are primarily concerned with the detection
of structures, patterns, groups, and similarities with the
data. Within a multidimensional dataset, data points can

be grouped manually into classes or automatically into
clusters. However, multidimensional projection mappings
are especially prone to distortion because projection methods
may not necessarily preserve the spatial relations of the
data. Several measurements have been introduced to assess
projection methods with respect to properties such as cluster
preservation and separation (or segregation) [38]. Projecting
the higher dimensions onto 2D spaces introduces some loss
of information that causes difficulties for some data analysis
tasks such as pattern identification, similarity seeking, and
cluster rankings [34]. Healey argues that the “strongest”
feature should be used to encode the relationships that are
most relevant to a user’s task [13]. As documented by
Etemadpour et al. [7] and Sedlmair et al. [37], density
strongly affects the perception of clusters. Since density is
an important feature of the multidimensional data, it makes
sense to preserve, as far as possible, this information during
the dimensionality reduction.

While “Big Data” commonly refers to datasets that con-
tain a very large number of data points, the term also often
implies the use of datasets with a very high amount of
dimensionality. In this paper, we explore how augmenting
visualization analytics techniques with motion makes it
easier to make sense of high-dimensional data. Specifically,
we explore various methods to encode density using density-
based motion. We demonstrate how tasks involving clus-
ters, such as pattern identification, similarity seeking, and
ranking, can be enhanced by motion. Usually, in a static
depiction, the proximity of data points is used for clustering.
Adding motion to the visualization can emphasize these
clusters, making them easier to distinguish. We also believe
that motion could be effective for uncovering data points
that become visually cluttered when projected into a lower
dimensional space. As noted by by Bartram, et al., since mo-
tion does not seem to interfere with existing color and form
coding [5], using motion to represent density would allow
visualization designers to communicate extra information us-
ing different modalities to represent other aspects of the data.
On the other hand, the human visual system groups elements
that are physically separated but that are similar to each
other. Thus, common-fate grouping can be used as a process
of grouping. Levinthal and Franconeri [22] showed that the
visual system is effective at searching for motion-linked



groups among non-linked objects. For these reasons, we
believe that motion could be a useful modality for assisting
in visualization tasks related to projected multidimensional
clusters. However, detailed perceptual guidelines on the use
of motion in high-dimensional data projections have not yet,
to our knowledge, been documented.

We describe and analyze two experiments that study
the effects of moving clusters on human perception over
multidimensional data projections; in each of the experi-
ments we investigate different types of motion (“circular,”
“wiggle,” and “pulse”). In the first set of experiments we
analyze a user’s perception when he or she is given typical
analysis tasks for 2D scatterplots that have been generated
synthetically. In this user study, we evaluated the ability of
users to perceive clusters and their relationships via density-
based motions. In a second user study, using real-world
multidimensional datasets from two different domains (an
image collection and a collection of documents) projected
into 2D visual spaces, we evaluate the ability of users
to discriminate between different magnitudes of motion.
Users are asked to perform three main analysis tasks on
the resulting 2D scatterplots. To decide on the projection
methods to investigate, we chose Isomap [42] as the rep-
resentatives of MDS approach, and PCA [17] a classical
dimension reduction strategy. PCA projection methods are
usually more prone to distort relations within and between
clusters. We also show that users perform well if clusters
are mapped to density-based motions even when examining
projected data that distorts their spatial relations. As Ware
has stated [45], understanding the perceptual processing
of users can provide design guidelines for visualization
systems. We draw conclusions on how the different density-
based motions influence visual interpretation and how this
supports or hinders effective task completion.

We provide a systematic user-centered examination of
visual tasks related to projected multidimensional data. Our
results show that users were able to perform visualization
tasks more effectively using density-based motion, and, more
specifically, that circular motions are especially effective for
most tasks. Our results show improvements on visualization
tasks related to the analysis of multidimensional data, includ-
ing relation seeking and pattern identification tasks between
or within clusters. Projection methods sometimes obscure
particular patterns by grouping points close together. By
giving users the ability to control the amount of motion in a
visualization we augment these existing projection methods
to make these points easier to perceive, enabling a more
effective visual analysis of high-dimensional datasets.

II. RELATED WORK

Ware et al. [47] shows that animation is a strong per-
ceptive attention draw that consequently may distract peo-
ple from their primary task. However, other studies have
found that motion is a useful modality for encoding or

augmenting data for information visualization tasks. It has
been shown that some characteristics of animation may
facilitate information-centric tasks and can be effectively
used to show large amounts of information in a small
space [24], [32]. Many other researchers have also examined
motion in visual search tasks [10], [12], [20], [23], [33].
Motion can indicate a global movement of a single entity
through, for example, animation of particles or glyphs that
represent magnitude and orientation. Bartram et al. [5]
describes an empirical investigation of use of variations in
color, shape, and motion in information-dense displays to
see how dynamic information is communicated from the
system to the user. Their results showed that when motion
was applied to a static glyph, even small linear oscillations
were significantly easier to recognize than a change to the
glyph’s color or shape. Motion is perceptually efficient for
visualizations incorporating multiple groups of data objects,
and, in particular, circular motion is more easily perceivable
but demands more attention that other types of motion [4].

Ware and Bobrow [46] suggest that the rapid visual query-
ing of nodes is possible when using highlighting methods
with interactive diagrams. In their investigation, evaluations
were carried out with networks on moderately large node-
link diagrams containing up to a few thousand nodes. These
previous studies show that motion is a powerful perceptual
cue that is effective for for a variety of perceptual tasks.
Nonetheless it remains a relatively under-explored visual
modality for practical applications, especially in relation to
tasks important for the analysis of Big Data. Therefore, we
suggest using motion for visual analytics tasks on high-
dimensional data.

Many projection methods exist to generate 2D similarity-
based layouts from a higher dimensional space, such as
principal component analysis (PCA) and multidimensional
data scaling (MDS). PCAs generate similarity layouts by
reducing data to lower dimensional visual spaces [17].
MDS refers to a broad range of techniques that trans-
form points defined in a higher-dimensional input space
into points represented in a lower-dimensional visual space
while maintaining pairwise distances between points [6].
Some projection methods, such as isometric feature mapping
(Isomap), favor maintaining distances between clusters in-
stead. It replaces the original distances by geodesic distances
computed on a graph to obtain a globally optimal solution to
the distance preservation problem [42]. A number of studies
have explored numerical methods to evaluate the quality of
layouts [38], [39], [27], [11]. However, Etemadpour et al. [8]
shows that no projection technique is capable of performing
equally well on every type of task; performance is also
dependent on specific data characteristics. Considering the
set of tasks globally, the best overall subject performance
was obtained on Isomap layouts, and PCA has problems
with cluster segregation and led to mis-interpretations in
a projected data. Thus, the correlations of data points



Figure 1. Instances of motion stimuli: wiggle, a combination of linear tran-
sitions; rotation, or circular motion; pulse, an in place expansion/contraction
motion.

or clusters are not always known after they have been
mapped from a higher dimensional data space to 2D display
space. How well groups of points can be distinguished by
users, or visual class separability, is investigated in different
studies [1], [36], [41]. Sedlmair et al. [35] investigates
the accuracy of class density measures in multidimensional
projection 2D layouts. Etemadpour et al. [9] investigates the
role of visual attention and guidance of attention for 2D
projection layouts from the user’s perspective. Rensink and
Baldridge [30] investigate the perception of correlation in
scatterplots from a psychological perspective. They explore
the use of simple properties such as brightness to generate
a set of scatterplots and they found that perception of
correlations in a scatterplot is rapid, and that in order to limit
visual attention to specific information it is more effective to
group features. Robertson et al. [31], in examining animated
graphs, found that using motion as way to display trends
over time did not lead to effective visual analysis amongst
users. However, other researchers, including Kehoe et al.,
found the exact opposite [19]. Our work also indicates that
motion, judiciously used, can be helpful for analysis tasks.

We created series of user studies to look at three different
motions that are similar to motions that have been inves-
tigated by other researchers and, as discussed above, that
represent simple motions readily perceivable by humans.
We call these three motions: wiggle, pulse, and rotation.
As shown in Figure 1, wiggle indicates a back-and-forth
translation along the horizontal axis, rotation indicates the
circular movement of a point while retaining its orientation,
and pulse indicates a repeating expansion and contraction
in scale. The magnitude of each of these movements is in
proportion to the density of the cluster to which a point
belongs. Here, velocity as one of the factors that change
the magnitude is considered. Specifically, the velocity is
correlated to the inverse of the cluster density. Thus, all
points belonging to the same cluster have the same rate and

magnitude, and the denser the cluster the less movement
there is. Specifically, we investigated point cloud scatterplots
without connectivity containing up to one thousand nodes
generated from high-dimensional datasets. We investigated
the use of each of these different motions to the static
scatterplots as well contrasting the use of motion with static
scatterplots. The static scatterplots already use proximity for
clustering, thus the motion condition is used to augment
this proximity feature. Bartram et al. [5] have stated that,
unlike hue or shape discrimination, motion is well-suited
to extracting information from “noisy” environments across
the entire visual field. Thus, motion may be especially
important in visualizations that are cluttered and difficult to
extract information from, such as PCA projections of high-
dimensional data.

III. DENSITY-BASED MOTION AND SYNTHETIC DATA

In the following sections, we introduce terms and tasks
relevant to all of our experiments. Thereafter, we discuss
specific user studies in more detail.

A. Definition of Cluster Density

The density of a cluster is defined via a minimum span-
ning tree algorithm that is applied to that cluster. This gives
us a optimal set of edges each with the shortest possible
length. Etemadpour et al. [8] define the density as the
number of points in the cluster divided by the sum of lengths
of the edges in the spanning tree:

density = np

/ ne∑
i=1

length(ei)

where np is the number of points in the cluster; ne is the
edges created by the minimum spanning tree algorithm;
and ei indicates the ith edge in the spanning tree. A
minimum spanning tree is an especially good solution for
multidimensional datasets because it considers distances in
high-dimensional space, scales particularly well when data
contains many dimensions, and is not sensitive to differences
in the shape of clusters.

B. Detection of Discrimination

Huber and Healey [16] explored the perceptual properties
of flicker, finding lower bounds of differentiability in terms
of frequency, direction, and velocity of flicker motions. They
showed that that minimum visual differences are needed for
flicker, direction, and velocity. But target flicker must be
coherent with the background. They have studied the cycle
length as the duration of the target element’s cycle in mil-
liseconds that investigate the viewer’s ability to distinguish
the presence or absence of a small group of target elements
that flicker at a rate different from the background elements.
Therefore, in the first study, we wanted to investigate the
ability of users to detect and to discriminate motion informa-
tion that is based on structural characteristics related to the



density of clusters. We investigated the minimum difference
in magnitude (velocity) that enabled users to distinguish
between similar clusters.

An Apple iMac with a 21.5” screen was used to display
the scatterplots via interactive web pages (served through a
locally running server) that also collected the user responses.
The system started immediately with the task and its proper
image after a short demographic question. The users were
presented with a sequence of either still or moving images
displaying the respective scatterplots. For each image they
were asked to answer the question as soon as they knew
the answer and to act as quickly as possible, although we
did not limit the time. Specifically, this experiment studied a
viewer’s ability to distinguish a small group of similar points
within a cluster (target elements) that move at a rate different
from the other points. Nine clusters were shown overlaid
onto a 3 × 3 grid. Each cluster was roughly centered over
one cell in the grid. When participants moved the mouse over
one of the clusters, that cluster was highlighted, as shown in
Figure 2, where the bottom left cell is selected, highlighting
one of the clusters. The magnitude of motion was the same
for all but one of the clusters. The participants were asked
to click on the cluster of points that appeared to have a
magnitude of motion that was different from the background
clusters as soon as they could identify it. They have been
asked to choose the cluster that moves in a different rate
once they detect it visually without using the highlighting
method. By asking this, we tried to minimize the effects of
highlighting that confound results.

As stated above the velocity of motion for each element
in a cluster was proportional to the inverse of that cluster’s
density; two clusters with quite similar densities reveal sim-
ilar motion information. Therefore, this section summarizes
some of our main findings about an individual’s ability to
discriminate stimuli that involve a similar kind of movement,
but with different magnitudes. In our formulated algorithms
below, the target elements and background elements com-
plete a whole cycle in a same time. Thereby, viewers can
perceive a difference between the target and the background
motion rates if the target elements complete a cycle with
higher velocity. This velocity is teasing apart a δ value that
changes the density of clusters. Direction, path curvature is
similar for the target elements and background elements in
order to keep them coherent.

The mapping functions for 4 different types of motion
were used in the different synthetic scatterplots. The abso-
lute difference in the magnitude of motion (velocity here)
between the points in the target cluster and the points in the
background clusters is defined for the different motions like
so:

wiggle :

 xt = sin(t)× δ/dn
yt = sin(t)× δ/dn
δ ∈ ⌊d⌋ × {2, 3, 4, 6, 7, 8, 8.5, 9, 9.8, 10}

pulse :

{
rt = sin(t)× δ/dn
δ ∈ {3, 3.6, 4, 5, 6, 7, 8, 9, 10, 11}

rotation :


xt = sin(t)× δ/dn
yt = cos(t)× δ/dn
δ ∈ ⌊d⌋ × {1, ⌊d⌋/2, ⌊d⌋, 3⌊d⌋/2, 5⌊d⌋/2,

3⌊d⌋, 2⌊d⌋, 7⌊d⌋/2, 4⌊d⌋}
where d is the density of the cluster and dn is the density
normalized within the interval (0, 1]. 10 different δ values
have been examined for each motion leading to a total of 112
stimuli, similar to the one shown in Figure 2. 35 students
participated in this study and a between comparison strategy
was followed.

Figure 2. Detections of discrimination: Clicking on the one cluster with
a different magnitude of motion.

1) Results: We originally chose our δ values based on
an initial estimation of motion rate change. Because these
estimations are arbitrary and not quantitatively based, we fit
them to a psychometric function for detection of differential
item functioning in order to determine the mean success
results [43]. Moreover, we were interested in finding the
smallest δ value while maintaining high accuracy. We antic-
ipated that identification would be faster and more accurate
when the target cluster was moving faster (i.e., when we
used a larger δ value). Thus, the Weibull function [25]
using a “maximum likelihood” procedure as a continuous
probability distribution is used. The coherence level that
predicts 80% correct performance as an acceptable success
rate is picked to determine the values for each motion’s
success rate. Figure 3 summarizes the results using the fitting
function. For wiggle, δ = 5.4978 predicts 80% correctness
that the parameters maximize the log likelihood. Similarly,
δ = ⌊d⌋ × 3.54 for wiggle can be considered as the lower
bound for an effective distinction between magnitudes. For
rotation, δ = ⌊d⌋× 0.608⌊d⌋ has the higher performance in
terms of success rate.

These results provide information regarding which densi-
ties can be easily perceived within a scatterplot that encodes
density using motion. A viewer’s ability to distinguish the
presence of a small group of target elements that move at a
velocity different from background elements increased with
higher values.
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Figure 3. Fitting with a parametric function (the Weibull function): for pulse δ = 5.4978 predicts 80% correctness; for wiggle δ1 = 3.54 predicts the
80% correctness and δ = ⌊d⌋ × 3.54 is desired; for rotation δ2 = 0.608 predicts the 80% correctness and δ = ⌊d⌋ × 0.608⌊d⌋ is our desired significant
value.

IV. DENSITY-BASED MOTION AND MULTIDIMENSIONAL
DATASETS

In addition to investigating motion on scatterplots created
from synthetic data, we also examined the use of motion in
real-world datasets.

A. Datasets and Projections

We used a document collection and an image collection.
Textual datasets generally have a high dimensionality even
when the data is relatively sparse. We chose the KDViz1

dataset as representative of document datasets with high
dimensionality. It contains documents collected from an
Internet repository related to four different topics with 1,624
unique documents, 520 different dimensions, and 4 highly
unbalanced labels.

Image datasets generally have a lower dimensionality
and are sensitive to the choice of the feature space. We
use the Corel dataset2 as representative of image datasets.
The Corel dataset includes 1,000 photographs related to ten
different themes, and each photograph is described by 150
dimensions (i.e., their SIFT descriptors). We chose these
datasets because of their high dimensionality, an aspect of
“Big Data” that sometimes is ignored.

We have selected two techniques as representatives of two
distinct strategies for embedding data in two dimensions,
namely statistical dimension reduction (PCA [17]), and
MDS (Isomap [42]). PCA is a classical dimension reduction
strategy often employed to generate visual embeddings of
data. 2D layouts are obtained by considering the two first
principal components (at the risk of disregarding other
potentially relevant components). Isomap is a variant of
MDS that builds a weighted nearest-neighbor graph from
the data, with pairwise point distances as edge weights. The
distance between two points in this graph creates the shortest
path. Cosine distance is the usual choice for text data and

1http://vicg.icmc.usp.br/infovis2/DataSets
2UCI KDD Archive, http://kdd.ics.uci.edu

we use this in our study for both projection techniques when
examining KDViz. For the Corel dataset, the choice of the
distance function was made based on the best point segrega-
tion on 2D projections, consequently Cosine distances were
chosen for PCAs and Euclidean distances were chosen for
the Isomap projections.

(a) Count Cluster (b) Rank Density (c)Association

Figure 4. Instances of task stimuli: (a) Estimate number of clusters, (b)
rank red, green, and blue clusters by density, (c) determine whether green
or blue cluster is similar to red object.

B. Analysis Tasks

We identified typical questions raised when visually
analyzing multidimensional data in order to define
representative user tasks. The visual analytics tasks on
high-dimensional data can be usefully categorized as
pattern identification, behavior comparison, and relation
seeking [2], [8]. First, we have been looking into pattern
identification tasks, where the targets were the detection of
clusters within a given point distribution in a scatterplot.
The behavior comparison task asks users to rank point
densities with clusters, in effect comparing characteristics
of the clusters. The relation seeking task asks users to
determine which cluster a particular point or object is more
similar to. Three different tasks as representative of each of
these categorizations are used as:

Count Cluster Estimate the number of observed clusters.
Rank Density Rank the clusters by density.



Association Identify which cluster a given point is most
similar to.

For task Count Cluster, the static layouts are either color-
coded based on cluster labels or shown with a single color
because we did not want colors to distract a user’s attention
from the main task of counting clusters. For task Rank Den-
sity, the colors were assigned randomly to the given clusters
in order to decrease the chance of inadvertent associations
with colors. Three clusters were shown in three different
main colors (red, green, blue). For task Association, each
of the two clusters were color-coded either green or blue,
while the reference point is given a red color. Figure 4 shows
an example stimulus for each task. For both Association and
Rank Density, to avoid bias, we randomly assigned colors
to each cluster.

C. Hypotheses

We formulate the following hypotheses:
H1 Density-based motion will improve user performance

of Count Cluster, Association, and Rank Density on
real-world projections.

Since both motion and color are handled by a dedicated
visual processing mechanism [3], we anticipated that motion,
as a preattentive visual feature, would perform as well as
color.

H2a Pairwise comparisons between detection accuracy using
color-coded clustering and density-based motion will
not deliver any significant difference for Count Clus-
ter.

H2b Pairwise comparisons between response times using
color-coded clustering and density-based motion will
not deliver any significant difference for Count Clus-
ter.

D. Computation of Errors

Given the ground-truth, we compute the errors in the
answers given by the subjects for each task. For Count
Cluster, which required the subjects to estimate a number,
the error percentage is computed by

e =
|ntrue − nanswer|

ntrue
× 100,

where ntrue is the estimated ground truth and nanswer is the
reported answer. For Association, which required a cluster
to be identified, the error is either zero or one. For Rank
Density, which required the user to rank clusters, we first
calculated the number of changes required to get from the
user’s reported answer to the ground truth. Each cost of
transformation was then calculated as the absolute value of
the difference between the densities of the clusters involved
in the transformation. This was then divided by the sum
of the densities of all three clusters, in order to normalize
the value relative to the “worst case” answer, in which all

three rankings must be swapped. For example, if the correct
ranking was (c1, c2, c3), and the user reported (c2, c1, c3),
one transformation is needed to get from the user’s response
to the correct answer, namely, exchanging c2 and c1. If the
cluster densities for (c1, c2, c3) were (20, 2, 12), respectively,
the user’s error would be calculated as:

e =
|densityc2 − densityc1 |∑

(densityc1 , densityc2 , densityc3)
=

|20− 2|
20 + 2 + 12

for a total error of 0.53. At the end of this calculation we
further multiply by 100 in order to make it easier to read.

E. Investigations and Statistical Methods

For the statistical analysis of the results of the user study,
we compared three types of motion and static scatterplots
with no motion for each task individually. By looking into
the mean errors (as computed using the methods described
in Section IV-D) over all subjects and all datasets, we tested
the distribution of the error values against normality using
the Kolmogorov-Smirnova and the Shapiro-Wilk tests. In
the case of non-normal distribution, we used the Friedman
test on K related samples when comparing more than two
groups. We also performed pairwise comparisons of the
groups using a Wilcoxon test on the results at the 0.05 level
to be able to report which pairs of groups differ from each
other significantly. The Kruskal-Wallis is used as a non-
parametric method for comparing more than two samples
that are independent. In case of normal distribution, we
used a t-test when comparing two groups and an ANOVA
test when comparing more than two groups. For pairwise
comparisons, in cases where there were more than two
groups we ran a series of Tukey’s post-hoc tests. In addition
to the mean error, we also evaluated each participant’s
confidence ratings (on a five-step Likert scale) as well as
the time it took for each participant to fulfill the tasks.

F. Set-up for User Study

We have created an interactive multidimensional data
projection tool for our experimental study that is based on
the concept of density-based motions. Our tool allows us to
create a series of views, each of which uses either the KDViz
or Corel dataset, the PCA or Isomap projection, and one of
the three motions we are exploring. For instance, Figure ??
(top) shows a view using an Isomap projection applied to
the Corel dataset using rotation. By changing a slider at the
bottom of the tool, the user is able to interactively increase
or decrease the magnitude of the motion. This slider updates
a magnitude factor F which alters the motions described in
Section III-B. For wiggle and rotation, F alters the range of
the x and y coordinates of the points. For pulse, F alters
the maximum radius of the point size.

We conducted a controlled user study involving 12 sub-
jects who were students or researchers in computer science



or medicine. The primary task area was approximately
6”×6”, with a margin approximately 3” from the left side
of the stimulus window and 1” from the top. The stimulus
subtended a field of view of approximately 24◦ to 27◦

of visual angle from the center of the stimulus window.
We considered multidimensional data analysis tasks similar
to the ones described for the synthetic data user study in
Section IV-B. Each subject was presented with a series
of 28 different scatterplots of projected multidimensional
data. For each of the scatterplots, we asked the partici-
pant to complete one of these three tasks. The presented
images include both animated and static projections. For
counterbalancing, a random function was used to shuffle the
order of the presented images. Again, as defined in Section
III-A, higher density clusters move less; more movement
indicates a sparser cluster. For Count Cluster, three motions
(pulse, rotation, and wiggle) in addition to static layouts
were considered. The static layouts are either color-coded
based on cluster labels or shown with a single color. For
Association, the given object was shown in red and the
two other clusters were colored green and blue. For Rank
Density, three clusters were shown in three different main
colors (red, green, blue). For both Association and Rank
Density, to avoid bias, we randomly assigned colors to
each cluster. Although projections are not meant to reflect a
particular clustering strategy, a specific solution provides a
valid baseline for comparison as long as it is a reasonable
one: if a cluster structure exists, a good projection should
be able to recover it, to some extent.

We favored four different clustering techniques to de-
termine cluster assignments for Count Cluster. We used
the adjusted Rand index [29] to compare the similarity of
different cluster assignments to the class labels given in the
data. As other authors have stated, taking class labels can
be used to generate pairwise constraints but it is arguable
whether or not this is the best solution for understanding
relations within multidimensional data [37], [21]. The Rand
index measures the similarity of two different partitions
of data (e.g. clusters or classes). Given that each partition
assigns each element into one of many subsets, the Rand
index calculates the amount of agreement between the two
partitions. Four clustering techniques were considered: K-
means, X-means [28], hierarchical agglomerative [26], and
hierarchical divisive [18]. Each clustering technique was
tested across a range of values of K (with the exception of
X-means, which determines the optimal number of clusters
on its own). For the Corel dataset, which contains ten
classes, K values from four to twenty were used; For the
the KDViz dataset, which contains four classes, K values
ranging from two to ten were used. For each clustering
technique, and for each value of K, the adjusted Rand index
was calculated, and the cluster assignment with the highest
adjusted Rand index was used to assign elements to clusters
in our study. For instance, a Hierarchical Agglomerative

clustering with k = 12 yielded the best Rand index (0.69)
for the Corel dataset.

1) Correctness: Figure 5 summarizes the results for real-
world data and each projection separately. The omnibus tests
for statistical significance showed that there is statistical sig-
nificance in the mean error for all tasks. The outcome of the
pairwise significance test is indicated by the red horizontal
lines. More precisely, groups of motions with no pairwise
significant difference among their mean error have lines of
the same color. Hence, we can conclude that density-based
motion outperforms static projections. Thus, Hypothesis H1
is confirmed. We considered one numerical measure that
measures the cohesion and separation between groups of
instances on the layout. The Silhouette [40] of a projection
is obtained by averaging the Silhouette coefficients of its n
instances. Resulting values vary in the range [−1, 1], with a
values of 1 indicating that the groups are perfectly separated.
Figure 6 shows Silhouette measurements for each dataset.
The highest Silhouette values (red bars) were obtained
by Isomap on Corel and KDViz. Corresponding Silhouette
values show that PCA did not perform well on the KDViz
dataset. However, for the Corel dataset, PCA improved the
separability coded by the original space features. For KDViz,
Isomap enhanced separability. Two principal directions were
used to compute the PCA layouts, but were not capable of
effectively separating either the k = 12 clusters in the Corel
dataset, or the unbalanced classes in the KDVis dataset. Our
statistical investigation showed that density-based motion
has the additional advantage of adding extra information to
the display that is especially helpful when the projections
create cluttered clumps of points.

Figure 6. Silhouette Coefficient computed for the original data.

We asked users to estimate the number of clusters in color-
coded projections without any motion (where the color of
the projected data points were based on what cluster they
belonged to). The results from a Wilcoxon Signed Ranks test
did not reveal any statistical significant difference between
motion and color (Z = −0.089, p = 0.929), Mean error in
percent for motion was higher though (Mean error=13.5402)
than Mean error for color (Mean error=10.9375). Therefore,
we can confirm H2a. We also investigated how long it
took for the subjects to complete the tasks in color-coded



Figure 5. Here we show the results of comparing the projection methods on the tasks considered; the bar charts show mean error and standard error
from the mean. There is statistical significance for all three tasks. The horizontal lines encode pairwise statistical significance using a red-to-white color
transition. For example, the Association’s red line excludes the pulse motion because wiggle and rotation outperformed both the pulse motion and the
static data.

projections and animated scatterplots. The statistical test did
not show any significant different between color and motion
when time is compared (Z = −0.471, p = 0.638). Finally,
for confidence levels, comparison between color and motion
did not reveal any significant differences (Z = −0.192, p =
0.848). Thus, H2b is also confirmed.

2) Confidence Levels: In regard to confidence levels, a
one-way ANOVA test showed significant differences among
all comparisons for Count Cluster (F (3, 92) = 11.57, p <
0.05). A Post-hoc Tukey showed significantly that the static
projections had the lowest level of confidence (Mean =
2.83). For Association, again significant differences were
seen (F (3, 92) = 33.39, p < 0.05) and Post-hoc Tukey
confirmed that static projections had the lowest scores. For
Rank Density, static projections also had significantly lesser
confidence scores (F (3, 92) = 11.601, p < 0.05). These
results are very consistent with the results we found in
examining user accuracy of the tasks; that is, the users’
confidence was warranted.

3) Time: Finally, we investigated how long it took for the
subjects to complete the tasks. Findings for Count Cluster
did not reveal any significant differences between motions
and static projection (χ2(3, 24) = 7.25, p = 0.064). Simi-
larly, for Association and Rank Density, a Friedman test
also did not show any significant differences (χ2(3, 24) =
1.05, p = 0.789), (χ2(3, 24) = 2.6, p = 0.457). We can
conclude that perception plays an important role in inter-
preting the scatterplots. For example, PCA had problems
with cluster segregation and led to mis-interpretations in a
static projected data. In particular, mapping of density-based

motion can enhance the perception and user’s performance
significantly, where the cluttered layout were displayed.

We also performed a comparative analysis of motions and
color-coded projection methods on two types of data, which
had similar levels of accuracy. As Bartram et al. discussed,
color is particularly well suited for categorization but less
effective at showing other relations [5]. Our results showed
that density-based motion can be an effective way to show
the density and similarity relations in multidimensional data
visualization. However, the cognitive costs associated with
using color and motion simultaneously should be investi-
gated because, as Healey stated, the various graphical codes
may perceptually interfere with each other [14]. Nonetheless,
our results indicate that motion can be used as an additional
approach in order to enable users to effectively explore
different aspects of data. A video demonstrating the different
phases of our user study can be found on the authors’
website, along with the full data collected from all 12 of
the participants3.

V. CONCLUSION AND FUTURE WORK

We described a series of controlled user studies that evalu-
ated how users perceive density-based motion in scatterplots.
However, some papers indicated that there was no advantage
to animations over static displays [44] because of their
complexity. Hegarty [15] explores ways in which providing
the user with interactive control of the visual representation
can be a useful way to increase the effectiveness of a

3https://dl.dropboxusercontent.com/u/571874/MotionStudy.zip



display. Thus, in our real-world dataset analyses we gave
users the ability to interact via changing a slider at the
bottom of the tool to increase or decrease the magnitude of
the motion. Cluster segregation, similarities, and behavior
comparisons were considered. Three types of motion were
chosen and the results confirm our general hypothesis that
motion techniques perform well on different types of tasks.
In the first experiment, motion as a low-level perceptual cue
with a lower bound related to density was investigated to
improve performance on similarity detection of data points
and their associated clusters. This study created the best
overall subject performance in enabling users to differentiate
clusters. In the second part of our study, we formulated
hypotheses for visual analyses of projected multidimensional
data. We investigated the role of motion related to cluster
characteristics (densities) in real-world data and the sta-
tistical tests confirmed those hypotheses. Multidimensional
data representations are often visually very complicated. Our
results showed that using a density-based motion not only is
useful for representing clusters of data, but also that it can
be potentially used as a means to more effortlessly inspect
other interesting aspects of multidimensional data.

In the future, we plan to test the effectiveness of motions
when allowing users to control the speed of movement,
to specify at a certain region, to select or deselect motion
methods, or to change colors. We would also like to design
further user studies to explore other perceptual properties
of motion, including frequency, amplitude, direction, and
phase. For this paper, our evaluations focused on high-
dimensional datasets, as high-dimensionality is an important
and sometimes overlooked aspect of Big Data. However,
we believe that density-based motion would be effective
for datasets with a very large number of data points as
well. Future work will explore density-based motion on
projections of datasets that are made up of a very large
number of samples within a very high-dimensional space.
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