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ABSTRACT

This paper introduces NeuroCave, an open-source immersive analyt-
ics software tool for exploring and making sense of both structural
and functional connectomes describing the interconnectivity be-
tween brain regions. The software supports visual analysis tasks
for clinical neuroscientists, facilitating explorations of connectome
datasets used in comparative group studies. Researchers can enter
and leave virtual reality as desired in order to visualize and reason
about connectome datasets from a range of different perspectives.

1 INTRODUCTION

Modern, noninvasive neuroimaging techniques provide a means
with which to understand structural and functional brain networks,
or connectomes [18]. Diffusion MRI derived white matter inter-
connectivity between different brain regions yields the structural
connectome, and BOLD signal correlations generate the functional
connectome. Mathematically, a connectome can be modeled as a
graph by representing the different brain regions as nodes. Such
models enable neuroscientists to apply network-theoretic methods
and metrics, revealing important properties of the brain, such as
small-worldness [1], clustering and modularity [15], and rich-club
configuration [20], among others.

Through ongoing collaborations with The Collaborative Neu-
roimaging Environment for Connectomics (CoNECt Lab) at the
University of Illinois Chicago, we identify four main tasks relevant
for clinical neuroscientists:

T1 Identify regions responsible for specific cognitive functions
and study their interactions with other regions.

T2 Compare individual networks to the mean or group average
connectome, or compare differences between two group av-
erage connectomes. In group studies, individual variations as
well as joint network characteristics are studied in order to
identify commonalities or differences.

T3 Identify the effect of structural connectivity on the functional
activity of the brain. Comparing both structural and functional
at the same time to reveal the complex mappings between
them.

T4 Identify individual or group changes occurring on the structural
or functional connectivities due to the onset of disease or aging,
and assess connectome restoration in drug studies.

To support these tasks, we explored a range of visual encodings
and layout strategies, both in 2D and 3D, using an iterative design
process in which we gathered feedback from expert users (clinical
neuroscientists, psychiatry professors, medical students, and post-
doctoral researchers) and made changes based on their feedback.
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Our neuroscience collaborators wanted to take advantage of the
greater sense of immersion that virtual reality (VR) provides, but
became aware that in some cases it was easier to make comparative
analyses within a traditional desktop environment. This was true
even for 3D layouts, and our visualization software, NeuroCave,
enables a workflow in which researchers can enter and leave VR
environments as desired. In practice, users tended to use the VR
environments to make initial explorations of the data and to generate
hypotheses about the connectomes, and then switch to a desktop
view once more nuanced investigations were required. However, we
believe this is partly due to users not being as familiar with navi-
gating in VR (and especially with making fine-grained selections),
and also because of the need to use additional applications during an
analysis (i.e., for web search, taking notes, etc.) that are not readily
available when wearing a portable VR headset.

2 NEUROCAVE

NeuroCave enables a wide range of interactive methods to support
these tasks, including: flexible data loading and data transformations,
enabling comparisons within and between connectome datasets;
user defined coloring scheme (based on lobar information, modular
and/or community affiliation, etc); a coordinate system that can
be defined interactively by users or automatically determined via
a modular layout; adjustable glyph size and transparency of nodes
and edges; adjustable connectivity threshold for displaying edges;
shortest path between two nodes; on-demand edge bundling and
edge coloring; and on-demand labeling of nodes and edges.

NeuroCave is inspired by a previous project, BRAINtrinsic [4, 5],
which provides a VR environment in which to explore connectome
datasets in different topological spaces after being transformed by di-
mensionality reduction algorithms [24]. NeuroCave provides richer
interaction and a more responsive interface, supports a wider range
of VR hardware, and, unlike other connectome analytics tools, is
specifically designed to support comparison tasks for group studies.
NeuroCave is implemented as a web-based application that runs
on all major web browsers and makes use of three.js, a JavaScript
graphics library, for real-time rendering of 3D scenes. The default
view is formed of two side-by-side rendering views (see the left
panel of Fig. 1 and both panels of Fig. 2). Each view enables the
interactive visualization of a connectome as a node-link diagram.

2.1 Group Visualization

NeuroCave loads connectome data from a user-specified folder. This
folder must contain all adjacency matrices as well as the correspond-
ing topological and clustering information of the subjects within
the study. An index file states the subject ID and its corresponding
data files. Each study or analysis session requires a predefined Atlas
that provides numerical labels and their corresponding anatomical
names to each node. NeuroCave currently supports three Atlases by
default: FSL-based parcellation, which consists of 82 labels from
FreeSurfer [8]; the Brain Hierarchical Atlas (BHA), comprised of
2514 labels [7], and the Harvard-Oxford Atlas, which uses 177 la-
bels [12]. Additional Atlases can be created and existing ones can be
customized easily, simply by using a pre-existing Atlas as a template
for defining a new one. (See the online instruction manual available
at https://github.com/CreativeCodingLab/NeuroCave for
more details of how to load in datasets and customize Atlases.)

https://github.com/CreativeCodingLab/NeuroCave


Figure 1: The left panel shows the user interface of NeuroCave, presenting multiple views to investigate connectome data. A researcher can
compare different datasets or the same dataset from different perspectives. Here, (A) shows a high resolution functional connectome, and (B)
shows the same connectome from a different orientation. When viewing multiple copies of the same dataset, actions can be synchronized so that
interacting with one connectome updates the other. Users can choose an atlas to label brain regions. (C) shows the the color/glyph atlas, and a
user can toggle on or off specific brain regions or classifications by clicking next to items in the atlas. Here, the right parietal lobe has been turned
off, making it easier for the researcher to interactively explore the specific areas of interest. In (D) a slider controls the opacity of all selected
connectivities; in (E), users can turn edge bundling on or off for selected brain regions; and in (F), users can set the minimum or maximum
threshold values and number of hops to determine which edges to display. Users can change the glyph size of individual nodes or selected brain
regions in order to highlight relevant information. Here, the user has selected and enlarged a node (G), and is investigating edges emanating
from the left parietal lobe above a threshold of 1.35518. NeuroCave is a web application that runs in both desktop and mobile environments,
and users can switch seamlessly between the standard and VR modes on demand. The inset image (bottom center of the left panel) shows a
neuroscientist exploring a 3D dataset in virtual reality using Oculus Rift VR with Touch controllers. The right panel shows a modular representation
on NeuroCave’s platonic solid layout, which can be used to effectively visualize multi-level hierarchical clustering.

A common task in disease studies involves the comparison of
two groups of subjects— e.g., a healthy control group versus a
disease group— in order to derive conclusions about alterations
due to the disease. To the best of our knowledge, no existing con-
nectome visualization application facilitates real-time simultaneous
comparison for two or more clinical datasets (although immersive
environments have been used to provide comparisons between indi-
viduals, including in neuroscience contexts [6, 16]). To address this,
NeuroCave enables neuroscientists to visualize connectome datasets
via a synchronized “side-by-side” layout, making it easier to explore
differences between groups of subjects, or the same group repre-
sented using different spaces, modalities, or in different coordinate
systems.

2.2 Topology Visualization

NeuroCave positions nodes according to the provided topological in-
formation. Available topologies include the anatomical positioning
or any of number of applied transformations that reformulate this
positioning into an abstract space. These topologies are automati-
cally identified by the application, and ongoing development aims
to enable the transformation of anatomical datasets into a range of
topological spaces on-demand.

Currently, we have applied a range of dimensionality reduction
techniques to connectome datasets, including Isomap [19] and t-
SNE [11], and we make use of these methods to help identify patterns
in the “intrinsic geometry” (i.e., the geometry as determined by
the brain connectivity itself, either structural or functional) of a
connectome dataset [24].

Users can switch between anatomical and abstract topological
spaces as needed to support particular analyses, making it possible to
see the same data transformed in various ways in order to investigate
the connectome from a range of different perspectives. Both panels
in Fig. 2 show a comparison of the same connectome dataset in an

anatomical versus a topological space (for functional and structural
connectomes, respectively).

2.3 Clustering Visualization
NeuroCave also supports the visualization of clusters of nodes (i.e.,
modular or community structure), either embedded within a topolog-
ical space, or simply as groups of related points (where the spatial
positioning of a cluster of nodes within the cluster has no meaning).
Clustering information is input as a vector of integer values, where
each value represents a different module or cluster. When there is
no meaningful spatial positioning provided for clusters (or when
we choose to exclude this information), NeuroCave makes use of a
novel layout technique that exploits the geometrical properties of
platonic solids. In brief, a platonic solid is a regular, convex polyhe-
dron constructed by congruent regular polygonal faces with the same
number of faces meeting at each vertex. Five platonic solids exist:
tetrahedron, cube, octahedron, dodecahedron and icosahedron, with
four, six, eight, twelve, and twenty faces, respectively. Based on
how many clusters are generated, a suitable platonic solid is chosen
such that its number of faces is greater than the number of these
clusters, with glyphs for each cluster covering the corresponding
face of a platonic solid embedded in a sphere. This enables the user
to “enter” into the geometry (i.e. into the “NeuroCave”) via one of
the unpopulated faces, providing a more immersive experience of
the data, especially when he or she toggles the display to activate
the virtual reality mode.

Users can interactively rearrange the position of the clusters
within the platonic solid in order to more easily see particular clus-
ters, for example, those that are densely interconnected, or that are
relevant for a particular analysis session. When applicable, clus-
tering can be recomputed on demand, with the user specifying the
number of clusters, which in turn updates the platonic solid that is
generated. Connections between individual nodes within clusters or
between clusters can be visualized as well, as described below. The



Figure 2: Left panel: Connectivity emerging from the anterior (red ring) and posterior (yellow ring) parts of the precuneus in anatomical space
(leftmost connectome) and an “intrinsic” space generated using Isomap (second connectome from left). The color code represents the modular
structure of the connectome consisting of 4 modules. Note that the orange community contains the default mode network. The bottom-left
inset shows another view of the left panel with all nodes enlarged in order to better see the modular structure. The top-center inset plot shows
the residual geodesics for the first 10 dimensions of the Isomap dimensionality reduction algorithm. Right panel: NeuroCave also supports
explorations of structural connectomes, here we see both intrinsic (second connectome from the right) and anatomical (rightmost connetctom)
geometry, for the same connectome dataset gathered the same participants as the functional connectome shown in the left panel, using a different
color atlas.

right panel of Fig. 1 shows an example of visualizing multi-level
hierarchical clustering using our platonic solids approach.

2.4 Node visualization

By default, we utilize two different glyphs (spheres and cubes) to
differentiate between left and right hemisphere affiliation. Nodes can
be colored according to lobar or modular information. Controlling
nodal transparency is also possible according to their color scheme
and colors can be interactively assigned to different amounts of
transparency modes as desired. For example, a brain region that
has been assigned a particular color can be toggled on or off (made
visible or invisible), or the transparency of one or more regions
or clusters can be increased or decreased in order to emphasize or
de-emphasize them (see Fig. 1, left). The glyph size of individual
nodes or groups of nodes is also interactively adjustable by the
user via our interface, both in desktop mode or in VR mode. Text
labels identifying the nodes can be displayed for all nodes or for
user-selected nodes on demand.

2.5 Edge Visualization

NeuroCave introduces a range of features to visualize edges effi-
ciently in order to show the connectivity between brain regions.
Network visualizations that have an excessive amount of overlap-
ping edges, common in dense node-link diagrams, can introduce
unwanted visual clutter, which makes it more difficult to read and
interpret the network. We provide different ways to mitigate this
problem. First, we provide the option to hide all edges by default
(i.e., to show only the nodes), and then enable a user interactively
add edges as desired. In this mode, a user can select any node as a
“root” node, causing all connected edges stemming from this node
to be displayed. Second, to minimize the clutter occurring from
edge crossings, even when all edges are displayed, we use the force
directed edge bundling (FDEB) algorithm to group edges going in
the same direction [10]. FDEB creates these bundles through an iter-
ative algorithm that consists of a series of subdivision cycles. In each
cycle, we subdivide an edge into a specified number of points (by
default, we use 6 cycles, and we double the number of points each
cycle, ending up with 64 subdivision points plus the two original
points of the edge). After the subdivision, we iteratively move each
subdivision point in an update step to a new position determined by
modeling the forces among the points.

Standard implementations of edge bundling are too slow for the
large numbers of edges that can appear in some connectome datasets

visualized in NeuroCave, reducing the frame-rate of the applica-
tion and preventing an effective real-time experience. Therefore,
we introduce an enhanced WebGL texture-based implementation,
extending previous work by Wu et al. [22]. Since the division and
update operations are performed on each point independently, the
FDEB algorithm is parallelizable and can be optimized for the GPU.
The texture-based method stores the subdivision points in a 2D GPU
texture, where each row represents the 3D coordinates of points
belonging to the same edge. Since write operations are generally
unavailable to GPU textures in most WebGL implementations, a
ping-pong algorithm is used to first render results to an offscreen
framebuffer object. Two shaders are utilized: the first performs
the subdivision operation, and the second executes the update steps.
GPU textures possess a limitation on their sizes. Hence, a large
number of edges cannot fit inside one texture. In Wu et al.’s imple-
mentation, this limitation on the texture size limits is not addressed.
We enhanced the algorithm using a tiling approach in which we can
extend the maximum number of edges by using multiple textures.
Since the total number of points of each edge after all cycles will be
known ahead (64 subdivision + 2 end points), we tile the edges when
the maximum number of possible rows per texture is achieved. Our
texture-based implementation can bundle the closest 1000 edges to
the selected node at interactive rates on a desktop computer. While
this is sufficient for the datasets we explored, we also enable users to
choose threshold values that limit only connections above or below
specified strengths to be computed, both to improve performance in
situations where the data contains very dense interconnections, and
to assist in analyses focused on particular connectivity weights.

Each edge can be colored using a gradient, whose two colors are
chosen according to the colors of the source and target nodes that it
connects. The gradient is skewed towards the node possessing the
higher nodal strength, that is, the sum of weights of links connected
to the node. This enables the user to quickly recognize the strength
of the selected node with respect to its interconnected neighbors,
which can help in identifying important nodes or clusters of nodes,
as well as to highlight the reason for modular changes when they
occur in group studies. The left panel of Fig. 2 shows an example of
this edge coloring approach.

2.6 Virtual Reality
Ware and Mitchell [21] show that stereographic visualization reduces
the error rate in graph perception for large graphs. Alper et al. [2] ob-
serve that, when coupled with a highlighting technique, stereoscopic
representations of 3D graphs outperform their non-immersive coun-



terpart. NeuroCave harnesses the capabilities of VR environments,
which can facilitate spatial manipulation, identification, and classifi-
cation of objects and imagery, and can aid users in understanding
complex scenes [3, 9, 13], extending the immersive functionality
available in previous connectome analytics software [4, 14].

NeuroCave can be viewed on a normal desktop or mobile envi-
ronment, or via a VR system. Currently we support the Oculus Rift
and the Samsung Gear VR platforms, with support for additional
platforms planned in the near future. In addition to the standard 3D
manipulations of panning, rotating, and zooming, NeuroCave sup-
ports the advanced interaction features available on the Oculus Rift
via the use of Oculus Rift Touch controllers. The Touch controllers
are a pair of VR input devices that track each hand, enabling an
effective gesture-based manipulation of the VR environment. The
user selects the preview area to be explored in VR and then uses
the “thumbsticks” on the Touch devices to navigate the visualized
connectome through panning, rotating, and zooming. Nodal selec-
tion is enabled via a two step procedure: first, pressing the grip
button lets the user point at and highlight a node; second, pressing
the index button selects the highlighted node. We can mimic some
of this functionality in other VR platforms (e.g., any platform that
supports WebVR, such as Google Cardboard or Daydream), but
node selection is not as effortless if the controllers do not contain
tracking sensors. Users can enter and leave VR mode as often as
they like in order to support investigations of connectome datasets.

Figure 3: In this photo, a user is shown wearing a Neuroelectrics
Starstim HeadCap, which reads EEG signals and can also direct
transcranial current stimulation to particular brain regions. Future
work will explore the live representation of a patient’s connectome
as a component of a biofeedback application that allows a patient to
modulate his or her own brain activity.

3 DISCUSSION

Through using the various features in combination in order to interact
with connectome datasets, NeuroCave supports a range of analysis
tasks. The rich set of visualization features provided by NeuroCave
makes it possible for users to explore connectome datasets in flexible

manner, to make observations about connectome data, to generate
hypotheses about these observations, and then to dive in more deeply
to support or invalidate hypotheses. That is, NeuroCave supports the
process of generating and querying visual representations in order
to answer task-specific questions and to facilitate sensemaking [17].

From our initial qualitative observations, we found that users
were very engaged in exploring the data while in VR mode, and en-
joyed switching between the different available layouts based on the
different clustering and dimensionality reduction techniques. Users
also indicated that they appreciated the ability to bring up different
datasets on demand while immersed in the VR mode, especially
to see if patterns discovered in one connectome (e.g., a connec-
tome dataset representing average healthy subjects) were present in
another (e.g., a connectome dataset representing average diseased
subjects). Somewhat surprisingly, users also readily moved between
the desktop display and the VR display without complaint. Future
work will quantitatively assess the impact of VR mode on analysis
tasks and empirically investigate the current NeuroCave workflow,
which encourages moving between VR and desktop modes.

NeuroCave has been utilized in a wide range of contexts to ex-
plore a variety of connectome datasets. These include a resting-state
fMRI high-resolution dataset consisting of 2514 regions-of-interest,1
as well as sex-specific resting-state functional connectomes in the
F1000 repository, a large 986 subjects resting-state fMRI connec-
tome dataset,2 both of which are publicly available at the NITRC
neuroimaging data repository. For the latter analysis, subtle differ-
ences were discovered between male and female connectomes re-
lated to language and emotion/affect processing, as were differences
in self-referential/autobiographical information retrieval. Future
work will build upon this preliminary insight, and we plan to extend
NeuroCave to support visual analyses to validate the discoveries that
were first observed in an immersive environment.

We plan to extend NeuroCave to support temporal connectome
datasets, and also to integrate real-time EEG data, which will intro-
duce novel visual analytics challenges [23]. Ongoing research at
CoNECt Lab3 investigates the use of noninvasive transcranial cur-
rent stimulation for cognitive enhancement and therapeutic purposes,
such as neuro-rehabilitation and emotional regulation. In one pilot
study, subjects wear a Neuroelectrics Starstim HeadCap,4 and direct
stimulation to particular brain regions in order to mitigate anxiety.
Future immersive analytics applications could present an interactive
feedback loop in which clinicians could see a visual representation
of a patient’s connectome, and stimulate the patient to modulate
brain activity in order to improve cognitive functionality.

The NeuroCave application and open-source code, along with
detailed instructions, video documentation, and examples, are
freely available at our GitHub repository: https://github.com/
CreativeCodingLab/NeuroCave. All panels in Fig. 1 and Fig. 2
show screenshots of connectome visualizations created using Neuro-
Cave, and a range of connectome datasets can be explored via the
online version of NeuroCave at https://creativecodinglab.
github.io/NeuroCave.

1http://www.nitrc.org/frs/?group id=964
2https://www.nitrc.org/projects/fcon 1000/
3The home page for CoNECt Lab at University of Illinois at Chicago can

be found at http://brain.uic.edu/
4http://www.neuroelectrics.com/products/starstim/starstim-tcs/

https://github.com/CreativeCodingLab/NeuroCave
https://github.com/CreativeCodingLab/NeuroCave
https://creativecodinglab.github.io/NeuroCave
https://creativecodinglab.github.io/NeuroCave
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