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ABSTRACT
Node-link diagrams are widely used for visualizing relational
data in a wide range of fields. However, in many situations it
is useful to provide set membership information for elements
in networks. We present BranchingSets, an interactive visu-
alization technique that uses visual encodings similar to Kelp
Diagrams in order to augment traditional node-link dia-
grams with information about the categories that both nodes
and links belong to. BranchingSets introduces novel user-
driven methods to procedurally navigate the graph topology
and to interactively inspect complex, hierarchical data as-
sociated with individual nodes. Results indicate that users
find the technique engaging and easy to use. This is fur-
ther confirmed by a quantitative study that compares the
effectiveness of the visual encodings used in BranchingSets
to other techniques for displaying set membership within
node-link diagrams, finding our technique more accurate and
more efficient for facilitating interactive queries on networks
containing nodes that belong to multiple sets.

1. INTRODUCTION
Node-link diagrams are a popular way to visually rep-

resent data elements and the relationships between them.
However, it can also be relevant to visualize the categories
that each node or link is a member of. For instance, it could
be meaningful to indicate the original source of particular el-
ements when multiple data sets are merged together; nodes
from different datasets could be grouped into different cate-
gories and visually distinguished based upon their origin. A
more complex, real-world example comes from the domain
of systems biology, where an important task involves ana-
lyzing signaling pathways in order to understand the bio-
chemical interactions between cellular components. These
complex pathway structures may need to be pieced together
from multiple experiments drawn from various publications
or databases, and it can be helpful to the biologist to provide
a clear idea of the provenance of the various elements and
relationships in the pathway [24]. Dynamic graphs could
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Figure 1: A prototype application that uses the
BranchingSets technique to facilitate the navigation
of a complex, hierarchical biological pathway dataset
where both nodes and links are members of one or
more sets. A user can interactively inspect a protein
complex to better see relevant information about
the hierarchical structure of the data. Here, we see
the“pruned tree”pop-up that provides details about
the hierarchical structure of the complex (1) and the
complex that the user is inspecting (2).

also benefit from a clear representation of which set or sets
links and nodes are members of. A user might be interested
in which links and nodes appear, disappear, or remain over
a sequence of time [4]. A particular range of time could be
represented by a different category, and a link or node could
be part of this set if it overlapped that span of time.

A range of solutions have been proposed to provide visual
clues about the set membership of data elements, such as
Venn Diagrams, Euler Diagrams [23], the UpSet visualiza-
tion [18], PivotPaths [11], RadialSets [2], TimeArcs [9], and
many others, as delineated in recent survey papers [3, 26].
Itoh et al. [16] introduce multiple-category graphs which are



defined using a space-filling algorithm coupled with a force-
directed layout algorithm. MapSets [12] uses a geographic
metaphor to visualize embedded and clustered graphs. Tech-
niques such as Bubble Sets [6], LineSets [1], KelpFusion [21],
and Kelp Diagrams [10] are designed to be overlaid on top of
existing visualizations and can readily be adapted to provide
additional information about node-link diagrams. These lat-
ter techniques also address the challenge of representing set
membership even when multiple intersections exist.

Bubble Sets displays set relations using isocountours, which
can produce problematic representations when an element
belongs to many multiple sets, in some cases causing ele-
ments to appear as if they are included in sets that they are
not members of. LineSets represents sets as smooth curves
and uses distinct colors to indicate set membership. All the
nodes that belong to the same set are connected by a single
curved lines, and nodes which belong to multiple sets are
located at the intersection of multiple lines. Identifying all
nodes that belong to a given set can be achieved by find-
ing the respective curve and then visually following all the
nodes placed on the line, similar to looking up what subway
stops are part of a particular subway line. Nodes that are
members of multiple sets can be identified by looking for
the nodes positioned at the intersections of two differently-
colored curves. This solution generally offers better read-
ability when sets overlap than Bubble Sets, but can look
tangled when visualizing multiple sets. Xu et al. [28] make
use of this technique to facilitate analysis of set membership
of nodes embedded in graphs.

Similarly, Kelp Diagrams depict set relations over points
with predefined positions. The layout provides a sophis-
ticated algorithm to size and color data elements in or-
der to maximize the aesthetic quality and clarity of the vi-
sual encodings indicating set membership. Although they
have been applied to network data, such as metabolic net-
works, they have been evaluated primarily on geospatial
data, where location has intrinsic meaning. Moreover, the
linking, or “link space” between nodes is explicitly not rep-
resentative of links in a node-link diagram, but rather an
additional visual artifact introduced to clarify set member-
ship (similar to LineSets).

KelpFusion uses continuous boundaries made by lines and
hulls in order to make it easier to see category information,
which might be more difficult to identify using the thinner
lines that are used by LineSets and Kelp Diagrams. The
visual appearance is generally comparable to or better than
LineSets for many tasks, though this depends on the spa-
tial arrangements of elements. Hulls are used to group to-
gether elements that are both spatially close and belong to
the same set; they are less effective when applied to node-
link diagrams that do not have an intrinsic spatial meaning.

Inspired by these approaches, and especially by Kelp Di-
agrams, we introduce BranchingSets, an interactive visual-
ization technique that enables interaction with node-link di-
agrams overlaid with set membership information. We have
evaluated our technique with a controlled user study which
measures the performance of BranchingSets in comparison
to LineSets, and Bubble Sets for different tasks using non-
spatial datasets. Furthermore, we have collected qualitative
feedback from users, many of whom indicate a preference for
our technique in terms of readability and visual clutter, par-
ticularly with datasets involving multiple set intersections.
Our contributions are as follows:

Figure 2: On the left (a), node E belongs to the
blue category but is visually disconnected from the
other blue nodes (A, B, and C) since no input or
output links belonging to the blue category exist.
On the right (b), we show BranchingSets using the
“protruding” links option with a blue, green, orange
color ordering, which may improve visual identifica-
tion of nodes and links that share set memberships.

Figure 3: On the left (a), we show links with and
without membership data; since the nodes B and C
do not share a category, the link connecting them
given a thin, black line. On the right (b), Branch-
ingSets is applied to a directed node-link graph; the
link between nodes B and C is bidirectional, the
others are unidirectional.

• We introduce a set visualization technique similar to
Kelp Diagrams and LineSets that is specifically adapted
for node-link diagrams with embedded hierarchical data;

• We conduct a user study that evaluates how different
techniques facilitate tasks relevant to set membership
identification on node-link diagrams, and in particular
queries involving multiple intersections;

• We provide a series of interaction techniques for ex-
ploring large datasets made possible by our technique,
including exploring nested nodes and/or nodes aug-
mented with further information and finding links be-
tween disparate nodes;

• We introduce a real-world application as a use case,
enabling the investigation of multiple biological path-
ways with hierarchical data.

2. MOTIVATION AND DESIGN GOALS
The development of the interaction techniques and vi-

sual encodings used in BranchingSets were motivated by
real-world use cases, primarily from projects that make use
of very large datasets involving multiple biological path-
way networks that contain: complex, hierarchically-nested
nodes; redundant information; and links that themselves
were usefully identified as members of one or multiple sets.
Domain experts had a strong expectation of seeing their
datasets using a network representation, yet bemoaned the
difficulty of identifying patterns within the“hairball”of links.
Based on a task analysis with these domain experts, we first



created an interactive prototype specifically for their needs,
but we believe that our approach is useful for a wider range
of network data containing category information. Section 6
explores a real-world use case that uses BranchingSets to
facilitate visual analysis tasks. Primary design goals include
the following items, which serve as building blocks that en-
able more complex visual analysis tasks:
Allow users to identify the membership of each node
and each link and the subgraphs composed of each
node and/or link that belongs to a specified category
(G1). We want to represent the membership of both nodes
and of links. When the representation combines relational
information from multiple data sources, it may be necessary
to identify the data sources that contain a given node or link.
Additionally, we want to be able to examine how a graph
changes over time and to track the evolution of particular
subgraphs over time.
Allow users to identify the subgraph resulting from
the intersection or the complement of different cat-
egories (G2). Given two or more categories, a user should
be able to identify the subgraph that makes up the inter-
section of two graphs (the portion shared between the cat-
egories) and also the complement subgraph (the graph that
belongs to a given category but not to others).
Utilize the visual representation of node-link dia-
grams (G3). We want to design a solution that does not
introduce additional visual clutter to the node-link diagram
and also that does not require the user to become familiar
with an entirely new visual metaphor. In certain application
domains users are familiar with node-link diagrams and, for
better or worse, skeptical of new data representations [20].
Reduce the complexity of the visualization (G4). We
want to enable the user to interactively simplify the repre-
sentation of a complex network as needed in order to display
only information relevant to his or her research. That is, we
recognize that even ideal visual encodings might not be suf-
ficient to provide a readable visualization of a large, complex
node-link diagram, and thus our technique allows the user
to quickly toggle specified graphs or subgraphs on and off,
or to interactively collapse a subgraph into a single node.
Enable interactive inspection of nodes and links (G5).
Especially in cases in which datasets contain many cate-
gories, we want to leverage user interaction in order to fa-
cilitate effective exploration. For instance, a user may be
interested in inspecting the contents or features of a node
belonging to multiple categories, or to find all connections
between two nodes that match a particular requirement.

3. VISUAL ENCODINGS
Here we provide a brief overview of the main visual encod-

ings used in the BranchingSets technique and identify where
they differ from those used in similar techniques. We assign
a different color to each category, and additionally we de-
fine an ordering of the colors. As explained below, the order
of colors is used to simplify the recognition of nodes which
belongs to the same categories. If the categories have no
intrinsic hierarchy, an ordering is arbitrary, but consistent.
Each node is assigned to the color of the category it belongs
to. If a node belongs to multiple categories, we use all the
respective colors, but give the node the primary color that
comes first in the colors ordering. A supplementary colored
border is added to the node for every additional category,
and the colors are assigned with respect to the colors order-

Figure 4: Examples of two datasets used in our
study. On the top, (a) and (b) show a representation
of the same dataset using both BranchingSets and
LineSets. On the bottom, (c) and (d) each show an-
other dataset using BranchingSets and Bubble Sets.

ing previously defined. This creates a visual correspondence
between nodes which belong to the same categories: nodes
that are members of exactly the same categories will present
an identical sequence of colors; and nodes that share only
a subset of categories will present the shared colors in the
same order.

Although otherwise similar to Kelp Diagrams, Branch-
ingSets also shows group information associated with links.
Similarly to the strategy designed for visualizing node mem-
bership, links are colored with the corresponding color of the
category. If the same link belongs to multiple categories,
multiple lines are placed side by side, one for each color.
This is different than the visual encoding used in Kelp Dia-
grams, which either uses a “nested style” or a “striped style”
of coloring links; and of course the Kelp Diagrams technique
does not aim to depict relationships in node-link diagrams,
but instead uses links only to emphasize point set member-
ship. Our technique is also reminiscent to one introduced
recently by Lambert et al. [17], but rather than using col-
ored hulls to surround the original links, we use the colors
themselves to indicate both the links and their set member-
ship.

Colored links have also been used to indicate connections
between protein-protein interaction networks by an applica-
tion that displays elements in the STRING database [13].
However, this application does not integrate the member-
ship of links with nodes in the network. By default, Branch-
ingSets represents links with line segments drawn under-
neath the nodes. This leads to the line segments “disappear-
ing” behind the circular shape of the node. An alternative
is to assign links and nodes of the same color to the same
graphical layer [10], resulting in a continuity between the
colored border of the node and the line segment that can
be helpful for tasks involving distinguishing subgraphs that
share categories. Fig. 2 shows a graph with and without the
“protruding” links.

Fig. 3 presents an example of how BranchingSets can be
used to show the grouping of links and nodes in directed
graphs. Many techniques for visualizing a directed edge,
such as tapered lines, gradients, or arrows [15], can reduce
the surface of the link, which makes it more difficult to iden-
tify its color. Techniques that make use of color blending or



an opacity gradient could similarly be difficult to use in con-
junction with a color coding for visualizing categories. The
thick tip of regular arrows introduces problems when multi-
ple links must be placed side by side, as our technique does.
For these reasons, we have adopted medium-sized line seg-
ments with a sharp tip to indicate direction. In case of a
bidirectional link, the line segment has a sharp tip on both
sides. Holten and Van Wijk [15] also explore the use of
curved lines to indicate direction, and our technique also
supports the use of curved lines as a way to quickly identify
cycles within a graph or subgraph.

4. USER STUDY
We have conducted a user study to evaluate the perfor-

mance of BranchingSets compared with Bubble Sets and
LineSets on node-link diagrams. BranchingSets shares simi-
lar visual encodings with Kelp Diagrams, and our results for
BranchingSets could also be applied to Kelp Diagrams for
the tasks we evaluate here (that is, in cases where links are
not assigned to categories). As evaluations of the efficacy of
visual encodings for cardinality, membership, and intersec-
tion tasks have been studied previously (in other contexts),
our study replicates aspects of these previous ones in order
to confirm results on non-spatial datasets. A quantitative
study measures the accuracy and the completion time for
a number of tasks across different levels of complexity (de-
fined below); additionally, a qualitative study examines the
users’ subjective evaluation in terms of ease of comprehen-
sion and visual clutter. Although this study does not in-
clude the interaction components of BranchingSets (which
are introduced in Section 5), we wanted to confirm that the
fundamental visual encodings were effective for displaying
multiple set intersections on node-link diagrams. Moreover
this study provides evidence for results that are not directly
addressed in previous work. In Alper et al. [1], LineSets is
evaluated in comparison only to Bubble Sets, and is eval-
uated on both maps as well as social networks. In Dinkla
et al. [10], Kelp Diagrams explicitly aims to provide a less
cluttered visualization than LineSets, but with similar func-
tionality, but does not include a quantitative user study.
Moreover, although the technique can be applied to arbi-
trary node-link networks, it is discussed primarily in terms
of geospatial datasets. In Meulemans et al. [21], KelpFusion
is evaluated against both LineSets and Bubble Sets, but is
intended only to augment map visualizations using continu-
ous boundaries. This study thus presents a new evaluation
of three distinct set visualization techniques on non-spatial
node-link diagrams, and also explores differences between
simpler and more complicated queries about intersections.

In order to perform the controlled user study we recruited
17 undergraduate or graduate students with backgrounds
in computer science or computer engineering. The age of
the users ranged from 20 to 34, with a mean age of 24,
and the gender distribution was 9 females and 8 males. For
each study we generated node-link diagrams with 17 nodes
and assigned category information to each node in the net-
work. Although we used only a small number of nodes,
this number was sufficient for exploring how differences in
complexity affected task completion. The diagrams ranged
in complexity along three parameters: the total number of
categories a node could belong to (number of intersections);
the density of the network (number of links between nodes);
and the overall cohesion of the categories (whether or not

similarly colored elements appear clustered together or are
randomly distributed across the network). The diagrams
were randomized across these parameters, with between 21
and 40 links and between 0 and 4 intersections for any give
node; each participant saw the same set of diagrams but
in a random order. Tasks involving multiple intersections
have not been explicitly evaluated previously, and facilitat-
ing complex questions on networks with properties of real-
world datasets was an important goal of our investigation.
It is important to note that BranchingSets allows edges to
belong to different categories. Since this functionality is not
enabled in the other visualizations, we colored edges with
the same color as the nodes they connected. For instance, if
a vertex A and B were both assigned to the same two cate-
gories, we used two colored links to indicate the multiple set
membership of the edges. Figs. 4a–d presents samples of the
images shown during the user study. Specifically, Figs. 4a
and b show one example dataset using two different repre-
sentations and Figs. 4c and d show another example dataset
using two different representations.

Questions for each task (described below) were asked in a
randomly shuffled order and were answered using a multiple-
choice format. Before starting the test, we made sure that
every user had sufficient background knowledge to perform
the test. Some students were not at first completely familiar
with graph layouts containing set information, and everyone
was given a short training session that described the funda-
mental concepts of node-link diagrams and set membership.
Following this short introduction, all the users were intro-
duced specifically to the Bubble Sets, LineSets, and Branch-
ingSets technique by showing and explaining images repre-
senting the same dataset with different techniques. Users
were allowed to ask questions to solidify their understand-
ing of how set membership was represented on each of the
techniques, and the administrator of the test checked their
understanding with brief questions. Though we told the
users that the study meant to evaluate different techniques,
users were unaware that the BranchingSets visual encodings
were the focus of our research. The study was performed on
a 15” monitor, and the figures were each 1000x800 pixels in
size. The users took time to get familiar with the interface
before starting the study. Furthermore, when a new ques-
tion was displayed on the monitor the user was able to read
the question and the possible answers before starting the
task. For each of the 12 questions, the figure was hidden
and the measurement of the time taken to complete a task
started only when the user themselves chose to reveal the
image.

We based our quantitative study on four common tasks
that can be performed on graphs with categories. These
tasks follow the study found in Alper et al. [1], but differen-
tiates between simple intersection tasks and more complex
tasks involving multiple intersections. Table 1 lists the tasks
and a sample question for each task; Tasks 1-4 are evaluated
over three different techniques: Bubble Sets, LineSets and
BranchingSets.

4.1 Hypotheses
We believe that the continuous smooth curves of LineSets

will perform comparably to the visual encoding of Branch-
ingSets for both T1 and T2.

(H1a) No significant difference will be found between the vi-



Figure 5: Correctness in percentage (bar charts show mean error and standard error from the mean): results
of comparing the three techniques on the four tasks considered. There is statistical significance for multiple
intersections and intersection tasks. The horizontal lines encode pairwise statistical significance using a red
and green colors. The red line indicates a significant difference between BranchingSets and Bubble Sets; the
green line shows significant difference between LineSets and Bubble Sets.

Figure 6: Time in seconds (bar charts show mean error and standard error from the mean): results of
comparing the three techniques on the four tasks considered. There is statistical significance for multiple
intersections, cardinality, and membership tasks. The horizontal lines encode pairwise statistical significance
using a red and green colors. The red line indicates a significant difference between BranchingSets and Bubble
Sets; the green line shows significant difference between LineSets and Bubble Sets; the blue line indicates
significant difference between BranchingSets and LineSets.

Table 1: Tasks used in the quantitative experiments

T1: Cardinality “Which group contains the most
nodes?”

T2: Membership “Which nodes are in the red group?”

T3: Intersection
“Which nodes are contained in both
the red and green group?”

T4: Multiple
Intersections

“Which nodes are contained in ex-
actly 3 groups?”

sual encodings used in LineSets and BranchingSets in terms
of either accuracy and completion time for the cardinality
task (T1).
(H1b) No significant difference will be found between Line-
Sets and BranchingSets in terms of either accuracy and com-
pletion time for the membership task (T2).

Alper et al. previously demonstrated that LineSets is supe-
rior to Bubble Sets for intersection tasks; our results should
confirm their findings. Although LineSets has been used
to visualize items belonging to large sets, the resulting out-
put can be quite tangled. BranchingSets’ visual encoding
of multiple sets will enable users to more effectively identify
set intersections (T3). Specifically, we expect users to more
quickly and accurately query the network for questions in-
volving multiple intersections (T4).

(H2a) BranchingSets will outperform LineSets and Bub-
ble Sets in terms of accuracy for intersection tasks (T3, T4).
(H2b) BranchingSets will outperform both LineSets and
Bubble Sets in terms of time for intersection tasks (T3, T4).

Further, we expect users to qualitatively respond more pos-
itively to BranchingSets’ layout of node-diagrams with mul-
tiple intersections than either Bubble Sets or LineSets.

(H3) BranchingSets will rate higher during intersection tasks
than both LineSets and Bubble Sets.

4.2 Results
Several aspects were considered for the statistical anal-

ysis of the results of the user study. First, we compared
the three methods for each of the tasks by looking into the
mean errors over all subjects and all data sets. Second, we
did the same comparisons considering the time it took the
participants to fulfill the tasks. Third, we compared the
three different methods against each other for an evaluation
of visual clutter; the participants were asked to state their
confidence about the visual clutter task using a Likert scale
(1 to 5). For all analyses, we computed means and standard
deviation of the errors. To test for statistical significance of
the individual results, we first tested the distribution of the
error values against normality using the Shapiro-Wilk [25]
tests. In case of non-normal distribution, we applied non-
parametric Friedman test [14] on K related samples when
comparing more than two groups. If the computed differ-
ences were significant, we performed pair-wise comparisons
of the groups using a Wilcoxon test [27] on non-parametric
related samples to be able to report which groups particu-
larly differ from each other. In case of normal distribution,
we used an ANOVA test when comparing more than two



groups. For pair-wise comparisons in case of more than two
groups we ran a series of Tukey’s post-hoc tests and Holm’s
sequential Bonferroni adjustment at the 0.05 level.

Figs. 5 and 6 summarize the results of the comparative
analysis of the three different methods for each of the four
tasks. The bar charts show the mean error values and the
standard error from the mean. The omnibus tests for signifi-
cance showed that there is statistical significance in the mean
errors for some of the tasks. The outcome of the pair-wise
significance test is indicated by the red, green, and blue hor-
izontal lines: if pair-wise comparison between BranchingSets
and Bubble Sets methods showed a significant result, the line
is colored red ; if pair-wise comparison between Bubble Sets
and LineSets showed significance, the line is colored green; if
pair-wise comparison between BranchingSets and LineSets
showed significance, the line is colored blue.

For T1, “Cardinality”, the Friedman test showed signif-
icant difference (χ2(2, 17) = 6.118, p < 0.047) among the
three methods. Applying the Bonferroni adjustment across
pair-wise Wilcoxon comparisons showed significant differ-
ences only between Bubble Sets vs. BranchingSets (Z =
−2.059, p = 0.039). Therefore, BranchingSets is faster than
Bubble Sets significantly but is as fast as LineSets for deter-
mining the cardinality of sets and thus H1a is confirmed.

For T2, “Membership”, the Friedman test showed signifi-
cant difference (χ2(2, N = 17) = 15.176, p < 0.001) among
the the three methods. Applying the Bonferroni adjust-
ment across pair-wise Wilcoxon comparisons showed sig-
nificant differences between Bubble Sets vs. BranchingSets
(Z = −3.385, p = 0.001) and Bubble Sets vs. LineSets(Z =
−3.101, p = 0.002). Thus, for this task Bubble Sets method
is slower significantly than other methods. However, there
is no significant difference between LineSets and Branch-
ingSets and H1b is confirmed.

As Fig. 5 shows, for T4,“Multiple Intersections”, the Fried-
man test showed significant difference (χ2(2, N = 17) =
22.194, p < 0.05) among three methods in terms of accuracy.
Applying the Bonferroni adjustment to pair-wise Wilcoxon
comparisons showed significant differences between Bubble
Sets vs. BranchingSets (Z = −3.432, p = 0.001) and Bubble
Sets vs. LineSets (Z = −2.795, p = 0.005). Therefore, Bub-
ble Sets has the least significant accuracy compared to the
other techniques for this task. However, there is not any sig-
nificant difference between LineSets and BranchingSets. For
T3, “Intersection”, the Friedman test showed significant dif-
ference (χ2(2, N = 17) = 3.250, p < 0.05) among the three
methods. Bonferroni across pair-wise Wilcoxon comparisons
showed significant differences only between pair-wise com-
parisons Bubble Sets vs. BranchingSets (Z = −2.363, p =
0.018). Thus, H2a is partially confirmed.

As Fig. 6 illustrates, for T4, “Multiple Intersections”, the
Friedman test showed significant difference (χ2(2, N = 17) =
12.706, p = 0.002) among the three methods in terms of
time. Applying the Bonferroni adjustment across pair-wise
Wilcoxon comparisons showed significant differences between
Bubble Sets vs. BranchingSets (Z = −3.290, p = 0.001)
and BranchingSets vs. LineSets (Z = −2.959, p = 0.003).
Therefore, BranchingSets is faster significantly compared to
the other techniques for this task. However for T3,“Intersec-
tion”, there was no significant differences between the three
techniques. Thus, H2b is partially confirmed.

In addition to these quantitative tasks, we also asked users
to answer qualitative questions about each technique in-

Figure 7: A detail of interactively-selected Rb-E2F1
subgraphs visualized with our prototype Branch-
ingSets application for biological pathway networks.

volved in the study. The questions measure user prefer-
ences in terms of visual clutter using a Likert scale from 1
to 5. We were interested especially to learn whether or not
users considered it easy to comprehend the layout and vi-
sual encodings used by our technique. Users noted that the
visual encoding of Bubble Sets is generally easier to under-
stand than LineSets and BranchingSets, whereas LineSets
and BranchingSets were found to be comparable. Users
overall indicated that they found our technique less clut-
tered than Bubble Sets. The average grade was 4.6 with
a mode of 5. After having evaluated the correctness of
the results and subjects’ task fulfilling times, we investi-
gate the subjects’ confidence. When looking into the av-
erage confidence values for data sets, the Friedman test
showed statistically significant difference among three meth-
ods (χ2(2, N = 17) = 19.143, p < 0.05). Applying Bon-
ferroni across pair-wise Wilcoxon comparisons showed sig-
nificant differences between Bubble Sets vs. BranchingSets
(Z = −3.542, p = 0.00035) and BranchingSets vs. LineSets
(Z = −2.811, p = 0.005). That is, BranchingSets method
is perceived as significantly less cluttered for all tasks com-
pared to the other methods and thus H3 is confirmed.

In summary, our hypotheses about BranchingSets proved
correct for T1 and T2, but only partially correct for T3 and
T4. However, we note that BranchingSets was as accurate
as LineSets for T4, while being significantly faster. Thus we
conclude that our technique provides an appropriate visual
encoding on which to build our interactive techniques for
real-world applications.

5. INTERACTION TECHNIQUES
Our user study confirms that the visual encodings used in

BranchingSets are more effective for that LineSets and Bub-
ble Sets for tasks involving multiple intersections. However,
we believe that any technique will have difficulty represent-
ing large networks featuring a large number of categories.
For instance, using color to represent sets may introduce
visual confusion when multiple sets are displayed simulta-
neously. In the remainder of this paper we introduce inter-
action techniques that mitigate the complexity of represent-
ing a large number of categories on large networks. These
interaction techniques, coupled with our ability to repre-
sent multiple set intersections effectively, facilitate a range
of real-world analysis tasks. BranchingSets provides user
interactions for exploring, extending, and inspecting hier-
archical nodes within a complex network. The interaction
tasks, discussed below, include:

• Highlighting and labelling categories;



• Hiding and unhiding categories;
• Filtering by keyword;
• Expanding neighbors of a selected node;
• Navigating and rearranging the layout;
• Finding intermediate steps between two nodes.

By default all node labels are hidden. This improves the
usability and avoids the inconvenience of too many labels
that might overlap and clutter the representation. When
the user hovers with the mouse pointer on a node, only the
labels of the nodes which are included in the same category
are displayed. Moreover, the category which includes the
hovered component stands out because all the nodes and
links which does not belong to that category change to a gray
color. If a node which is included in more than one category
is hovered, all the involved categories will be highlighted.

The user can dynamically explore the data by hiding or
revealing different categories. A given node or link is visible
if it belongs to at least one visible category, and it shows
the memberships related to these categories only. We also
enable users to search the network by typing one or more
words in a text field. The visualization will display only
the nodes whose labels matches at least one of the searched
keywords. The ability to search dynamically for keywords
and filter categories, together with the methods described
below, enables an efficient way to progressively explore large
datasets.

By clicking on a node the visualization will be expanded
to display all the nodes connected to it. This interaction
enables the following workflow: the user searches for a set of
nodes of interest, then he or she progressively explores the
network of interconnections by revealing the neighbors. The
visualization of large datasets can easily exceed the bound-
ary of the screen. For this reason we enable the user to in-
teractively zoom in, zoom out and pan across the viewport.
Since the representation may lead to edges that intersect,
the user can drag and drop any component to a preferred
location to improve visibility.

In addition to clicking to reveal connected neighbors, a
user can expand the set of visible nodes and links in an-
other manner. When dragging the mouse from one node to
another while holding the right mouse button, the visualiza-
tion updates by showing all sequences of nodes and links that
start from the first node and end with the last. In directional
graphs, only the sequences of links from the first node to the
target node will be revealed, though additional paths could
added through subsequent user interaction. Some applica-
tions of this interaction could include: revealing the biolog-
ical elements between two proteins a biochemical pathway,
showing the stages of an industrial process in a workflow
diagram, or displaying the sequence of web-pages that can
be visited in order to navigate from one page to another.

6. EXPLORING BIOLOGICAL PATHWAYS
Biological pathways are used to represent the chain of in-

teractions in a biological process. They describe the bio-
chemical functionality of proteins in a cell. Biologists need
a visual representation of biological pathways to support a
number of tasks, such as: understanding the network topol-
ogy of the pathway; enabling the inspection of the hierarchi-
cal structure of pathway elements; understanding relation-
ships between different pathways; and making hypothesis
about pathways [24]. Different visualization techniques have

Figure 8: On the left, the user drags the mouse from
one biological complex to another. On the right, the
visualization is updated with all connecting paths.

been adopted to face these challenges. Typically, pathways
are represented as directed graphs, where nodes represent
biological participants, such as proteins or biological com-
plexes, and edges represent a biological functionality, such as
a biochemical reaction. Visualization tools for pathway anal-
ysis include Entourage [19], Reactome Pathway Browser [7],
ReactionFlow [8], and others that utilize node-link diagrams.
ChiBe [5] extends the node-link representation by display-
ing compound nodes that indicate the composition of com-
plexes. Although this approach is similar to our implementa-
tion [22], when multiple pathways are displayed ChiBe does
not show the correspondence between a component and the
pathways it belongs to.

We used BranchingSets to visualize and enable the inter-
active exploration of multiple pathways simultaneously [22].
The complexity of these pathways was mitigated using our
application, and biologists were able to more effectively fil-
ter, search, and compare biological pathway data. Our pro-
totype application can be accessed via our GitHub reposi-
tory.1 Fig. 7 shows a subset of participants and reactions
included in the Rb-E2F1 pathway, as found in the Reac-
tome database.2 The visualization aims to provide a better
understanding of the biological components and reactions
shared among different sub-pathways included in Rb-E2F1.
We assigned a different color to each sub-pathway, and cir-
cles and rectangles were used to represent proteins and bi-
ological complexes, respectively. The directed links between
nodes represent biochemical reactions.

The user can interactively choose to focus on a limited set
of sub-pathways to reduce the amount of information and
the number of different colors displayed at a given time. We
implemented the user-driven interactions described above,
enabling a procedural exploration of the network while re-
ducing visual clutter. Fig. 8 shows the user interacting with
the visualization to discover all the intermediate steps be-
tween two participants. Because our system reduces visual
clutter that can occur in other set visualization techniques,
we can introduce new visual elements that may be useful for
displaying additional information. For instance, biological
complexes are made up of nested groups of proteins. Double-
clicking on a node expands it within the node-link diagram,
allowing the user to inspect the hierarchically-nested protein
data layered within the complex. Fig. 1 shows an example of
what one of these expanded nodes looks like, along with an

1https://github.com/CreativeCodingLab/BranchingSets
2http://reactome.org/PathwayBrowser/#/453279



accompanying “pruned tree” visualization that locates spe-
cific proteins within the hierarchy of the protein complex.

7. CONCLUSIONS AND FUTURE WORK
In this paper we described BranchingSets, an interact-

ive visualization technique that shows category information
within node-links diagrams. We applied our technique to a
dataset containing multiple biological pathways comprised
of complex hierarchical data. BranchingSets is specifically
designed to be integrated with node-link diagrams, which
leads to more concise, less cluttered representations com-
pared to other techniques that show the category informa-
tion within a spatial structure. Additionally, our technique
can display the set membership of links, either separate
from or in conjunction with nodes. Furthermore, Branch-
ingSets includes a set of user-driven techniques for interac-
tively exploring, extending, and inspecting a complex net-
work. These interactions have proven to be helpful when
delving into large datasets.

Additionally, we presented a user study that demonstrated
that the visual encodings used in BranchingSets are effec-
tive at helping users recognize similar patterns and to iden-
tify differences between graphs as well as to identify nodes
that belong to multiple categories. For other tasks, such as
simple intersection or membership tasks, our technique was
comparable to LineSets. Even when there was no quanti-
tative difference is accuracy or speed, users indicated that
our solution produces representations which are more easily
comprehended and less cluttered when compared with Bub-
ble Sets or LineSets. As discussed, our results should, in
certain cases, apply to Kelp Diagrams, which inspired the
main visual encodings of our technique. We plan to conduct
further studies to explore how our solution scales when we
increase the number of nodes, connections, categories, and
intersections. Moreover, we plan to evaluate the effective-
ness of the user-driven interactions to manage the explo-
ration of large datasets in a range of application domains.
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