A Reduced-Precision Network for Image Reconstruction

MANU MATHEW THOMAS, University of California, Santa Cruz
KARTHIK VAIDYANATHAN, Intel Corporation
GABOR LIKTOR, Intel Corporation
ANGUS G. FORBES, University of California, Santa Cruz

Neural networks are often quantized to use reduced-precision arithmetic, as it greatly improves their storage and computational costs. This approach is commonly used in image classification and natural language processing applications. However, using a quantized network for the reconstruction of HDR images can lead to a significant loss in image quality. In this paper, we introduce QW-Net, a neural network for image reconstruction, in which close to 95% of the computations can be implemented with 4-bit integers. This is achieved using a combination of two U-shaped networks that are specialized for different tasks, a feature extraction network based on the U-Net architecture, coupled to a filtering network that reconstructs the output image. The feature extraction network has more computational complexity but is more resilient to quantization errors. The filtering network, on the other hand, has significantly fewer computations but requires higher precision. Our network uses renderer-generated motion vectors to recurrently warp and accumulate previous frames, producing temporally stable results with significantly better quality than TAA, a widely used technique in current games.

CCS Concepts: • Computing methodologies → Neural networks; Rendering

Additional Key Words and Phrases: Neural networks, antialiasing

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).

ACM Reference Format:

1 INTRODUCTION
Synthesizing computer-generated imagery involves two key functions: sampling the incident radiance on an image plane and applying a reconstruction filter to produce the final image [Cook et al. 1984]. If the incident radiance is undersampled, high-frequency components resulting from visibility discontinuities or specular lighting can appear as aliasing in the reconstructed image. To reduce aliasing, production renderers typically apply supersampling with a large number of samples per pixel. On the other hand, real-time applications rely on a combination of radiance prefILTERing and specialized image reconstruction techniques. Temporal antialiasing (TAA) [Jimenez et al. 2012; Karis 2014; Yang et al. 2009] is an image reconstruction technique that is widely used in games today. TAA uses renderer-generated motion vectors to gather and accumulate samples from previous frames, effectively increasing the number of samples per pixel. However, TAA is susceptible to ghosting artifacts, loss of detail, and temporal instability [Yang et al. 2020].
Convolutional neural networks offer a promising alternative for image reconstruction, and have been successfully applied to closely related fields such as denoising [Bako et al. 2017; Chaitanya et al. 2017; Vogels et al. 2018]. The U-Net [Ronneberger et al. 2015] architecture is particularly well suited for such tasks as it processes features at multiple scales, achieving a large receptive field and more effective filtering with a relatively low computational cost.
With the hardware acceleration of 8-bit and 4-bit tensor computations on GPUs [NVIDIA 2018], quantizing the weights and activations of such a network can be key to achieve real-time performance, without compromising its expressive power. However, quantization errors can severely impact the image quality, especially with high-dynamic-range content. We can see from Figure 2 that the minimum contrast step with 8-bit integers far exceeds the human contrast sensitivity threshold [Barten 2003] on a high-dynamic-range display.

We introduce a novel network called QW-Net that addresses this issue by using a combination of two networks, a feature extraction network and a filtering network. The feature extraction network is based on U-Net and can be quantized to 4-bit integers as feature detection is more resilient to quantization errors. The filtering network is another U-shaped network that uses the extracted features at each scale to predict filters. The filtering operations require a higher precision but involve significantly fewer computations than the feature extraction network. The name QW-Net is motivated by the coupled U-shaped networks resembling a W, as well as the quantized nature of our feature extraction network.

Our network combines the advantages of U-Net and kernel prediction networks [Bako et al. 2017]. It achieves a large receptive field with just a few layers, similar to the U-Net, while avoiding artifacts like color shift and requiring significantly less training time, similar to kernel prediction networks [Vogels et al. 2018]. Moreover, our network temporally refines the reconstructed image by recurrently warping and accumulating previous frames.

Although our motivation for using 4-bit convolutions is improved inference performance, realizing the full potential of a quantized network requires extensive exploration of various implementation aspects such as tensor layouts, tile sizes, kernel fusion and constraints imposed by the hardware, which are beyond the scope of this paper. Our goal is to show the feasibility of a heavily quantized network for image reconstruction using a novel network topology that preserves image quality. To the best of our knowledge, this is the first 4-bit network applied to image processing. We evaluate image quality using simulated quantization and include an analysis of the computational cost and the performance of 4-bit convolutions in section 5.4.

Fig. 2. Minimum contrast step for a 1000 nit display with different numeric formats. The step size with 8-bit integers exceeds the human contrast sensitivity threshold even with perceptual quantization (PQ) to minimize the perceived error [SMPTE 2014].

2 BACKGROUND

2.1 Antialiasing and Image Reconstruction

On a fundamental level, the sampling theorem defines the minimum sampling frequency of a signal as twice its maximum frequency, also known as the Nyquist limit [Proakis and Manolakis 2006]. However, the radiance sampled on a virtual camera’s sensor is often not band-limited: while geometric surfaces are continuous, the visibility function of light transport is not. This makes the application of low-pass reconstruction filters necessary to remove higher frequencies from the sampled signal in order to suppress aliasing [Mitchell and Netravali 1988], which commonly manifests as the “wagon wheel effect” or flickering in the temporal and jagged edges or “fireflies” in the spatial domain. Aliasing can also be reduced by prefiltering high-frequency terms in the sampled radiance, for example, specular lighting [Kaplanyan et al. 2016]. The term antialiasing broadly encompasses prefiltering, sampling and reconstruction techniques that seek to avoid or remove undersampling artifacts.

A straightforward way to overcome aliasing is supersampling, evaluating multiple sub-pixel radiance samples, but this also increases the cost of rendering. A cheaper alternative called Multisampling antialiasing (MSAA) [Akeley 1993] was one of the earliest antialiasing methods to be supported by graphics accelerators, where shading is sampled once per pixel, while visibility is sampled at a sub-pixel granularity. However, MSAA is less commonly used in modern games, where deferred shading has become a dominant technique. Deferred shading is evaluated once per pixel and therefore does not benefit from MSAA. Moreover, MSAA can significantly increase the storage cost for intermediate shading data in the G-buffer. Instead, modern games typically rely on post-sampling reconstruction techniques to suppress aliasing. Early examples of such a technique include morphological antialiasing (MLAA) [Reshetov 2009] and its derivatives [Jimenez et al. 2012] that detect jagged edges and smooth them to improve image quality. However, these approaches can miss fine geometry that is not sufficiently sampled within a single frame often resulting in aliasing in the temporal domain.

Temporal antialiasing (TAA) is a more recent family of techniques that leverage frame-to-frame coherence to amortize supersampling over time [Yang et al. 2009]. Like supersampling these techniques can reduce aliasing caused by high-frequency components of the visibility function as well as shading. TAA uses motion vectors to re-project a sample position in the current frame to its previous location in a temporal accumulation buffer [Nehab et al. 2007] from which, a color value can be gathered and blended with the current pixel, effectively adding more samples. However, the gathered color may not match the current pixel, for example, a surface that is currently visible might be occluded in the previous frame or a shaded value may change from one frame to another due to moving shadows and reflections. Most TAA implementations use heuristics like neighborhood clamping [Karis 2014; Salvi 2016] to reject mismatched colors as they can cause severe ghosting artifacts. Unfortunately this does not eliminate all ghosting. Moreover, if the rejection heuristic is too aggressive the temporal accumulation becomes ineffective. Yang et al. [2020] survey recent TAA techniques and provide an in-depth analysis of the image quality trade-offs with these heuristics.
2.2 Neural Networks for Reconstruction

In recent years there has been a growing interest in applying neural networks to problems in rendering. One area in particular that has seen rapid advances is denoising of Monte Carlo renderings, which aims to remove noise from simulated distributed effects like soft shadows, indirect lighting, depth of field, motion blur etc. While neural networks had been previously explored for denoising natural images [Burger et al. 2012], Kalantari et al. [2015] were the first to apply it to Monte Carlo rendering, where they used a multi-layer perceptron to drive the parameters of feature-based denoising filters. Later, Bako et al. [2017] used a convolutional neural network to predict the filter kernel itself, achieving significantly better results. Chaitanya et al. [2017] introduced an alternate approach, using a network based on U-Net [Ronneberger et al. 2015] to directly predict the denoised image. By introducing recurrent connections inside a U-Net network they were the first to demonstrate temporally stable results at interactive rates. U-Net also has the advantage of achieving a large receptive field using a multi-scale architecture, which is crucial for denoising sparsely sampled images. On the other hand, achieving a large receptive field with a single predicted kernel [Bako et al. 2017] is impractical, as the complexity of filtering and the last prediction layer grows significantly with the filter size [Gharbi et al. 2019]. This limitation was overcome by Vogels et al. [2018] by predicting filter kernels at different scales using multiple deep residual networks [He et al. 2016]. The filtered images were progressively up-sampled and blended using predicted weights to produce a denoised result. They compared their approach against a variant of the direct prediction network of Chaitanya et al. observing over-blurring and color-shift artifacts with direct prediction. They also discussed the possibility of using a U-Net to efficiently predict kernels at different scale. The concurrent work of Hasselgren et al. [2020] uses such a network with a feedback loop to achieve temporally stable results. Along similar lines, we use a U-Net network to predict filter kernels for reconstruction but instead of applying independent filters at each scale, we use a filter network that resembles U-Net, progressively filtering and re-sampling the image. By incorporating predicted filters in between each downsampling and upsampling step, we can better reconstruct feature details at each scale.

Image reconstruction is a more general problem of producing an antialiased image from point samples. In real-time applications, the input to a reconstruction technique like TAA is denoised using filters, specialized for effects like shadows, reflections or ambient occlusion. Neural networks are also promising for image reconstruction as initially demonstrated by Marco Salvi [2017] using a U-Net with a warped feedback loop. Kaplanyan et al. [2019] also used a recurrent U-Net to reconstruct a peripheral image for foveated rendering from a very sparse set of samples. We compare our approach against a U-Net based direct prediction network, but with a simpler form of recurrence [Hasselgren et al. 2020; Sajjadi et al. 2018] using the warped output image instead of a hidden state. Recently, a combined real-time image reconstruction technique called Deep Learning Super Sampling (DLSS) [Liu 2020] was introduced, but the details of the underlying network are unknown. Concurrent to our work, Xiao et al. [2020] introduced a reconstruction technique based on U-Net. Using an optimized inference implementation they reconstruct a 1080p image in 18 to 20 ms on a high-end GPU. In comparison, DLSS reconstructs a 4K image in under 2 ms. Both these approaches can reconstruct images at a higher resolution than the input render. In this paper we reconstruct a super-sampled image at the same resolution, focusing on achieving high quality, temporally stable results with aggressive quantization.

2.3 Quantized Networks

A full-precision network can be quantized either using a post-training technique or by training the network with simulated quantization.

With post-training quantization, a network is quantized using the distribution of trained weights and by measuring the distribution of activations on a sample dataset, a process known as calibration. For example, TensorRT [Migacz 2017] quantizes weights and activations by minimizing the Kullback-Leibler (KL) divergence between the quantized and un-quantized distributions. TensorFlow [Jacob et al. 2018] on the other hand maps the range of the weight tensor and the average range of the activations computed over several batches, to the range of the quantized format. Unfortunately post training quantization shows as significant degradation in accuracy with 4-bit integers (INT4) and lower precisions [Jacob et al. 2018; Krishnamoorthi 2018].

Jacob et al. [2018] proposed an alternate quantization-aware training approach that simulates quantization errors during training, achieving significantly better accuracy. Simulated quantization introduces quantization errors in the forward pass by quantizing the weights and activations and dequantizing them back to the original range. However, in the backward pass, weights and biases are updated with floating point precision without any loss in precision.

The choice of threshold values for quantizing weights and activations greatly impacts the accuracy of the network. While Jacob et al. [2018] derived the quantization thresholds based on a measurement of the tensor range, Jain et al. [2019] and Esser et al. [2019] showed that the quantization thresholds could be trained to further improve accuracy. They derived the gradient of the quantization function applying a straight through estimator [Bengio 2013] for the gradient of round/ceil operations but without approximating these operations with an identity function. This allowed the thresholds to grow (favoring larger dynamic range) or shrink (favoring higher precision) based on the gradients.

A majority of existing work on reduced precision networks use a uniform quantization scheme where the quantized values are evenly spaced [Lin et al. 2016; Nayak et al. 2019; Zhou et al. 2017, 2016]. A uniform quantizer can be further classified into asymmetric and symmetric quantizers. An asymmetric quantizer applies an affine transformation with a scale and a zero-point to map values in the floating-point range to the integer range. In a symmetric quantizer, the zero point to set to 0 reducing the affine mapping to a linear mapping. The symmetric quantizer avoids the overhead of handling zero-points making it computationally efficient. A large body of work explores binary and ternary neural networks, where the weights and/or activations are quantized to binary or ternary values [Courbariaux et al. 2015, 2016; Rastegari et al. 2016; Zhu et al. 2016].
These networks push quantization to its limits but also lose a significant amount of accuracy.

3 QW-NET

Figure 3 shows the details of the QW-Net architecture, comprising the feature extraction network and the filtering network. The input to our network is a sequence of images and per-pixel motion vectors generated by the renderer. The network processes images in tone-mapped space, similar to the approach of Bako et al. [2017]. However, instead of the log transform, we use the inverse of the perceptual Electro-Optical Transfer Function (EOTF) [SMpte 2014] which is a better match for the human contrast sensitivity model. We map the EOTF to a luminance range of up to 1000 nits. Besides achieving better results with high-dynamic-range content, tone mapping also reduces the overall perceptual error with 8-bit and 4-bit integer formats.

Similar to TAA, the input images are rendered with a sub-pixel jitter sequence producing a spatial distribution of samples over multiple frames. In order to leverage this distribution and temporally accumulate samples, we apply the frame-recurrent approach of Sajjadi et al. [2018], where the previously reconstructed frame is warped and concatenated with the input frame, forming the current input to the network. Assuming U_0 is the feature extraction network and U_f is the filter network, the reconstructed output I^f_k at frame k is given by

$$
I^f_k = U_f \left(U_c \left(I^e_k, I^w_k \right), I^e_{k-1}, I^w_{k-1} \right),
$$

where I^e_k is the aliased input image, I^w_k is the warped previous output, I^e_0 is a 2D grid of motion vectors and W is a bilinear warp function.

3.1 Feature Extraction

The feature extraction network is based on the U-Net architecture which includes a series of encoder blocks that downsample the image followed by decoder blocks that reverse this process. The first stages in the network convert the input images I_a and I_w to grayscale and compute their gradient magnitudes. The two gradient magnitude images are concatenated with I_a and I_w forming the input for the first convolution layer. The gradients highlight aliased regions in the image which aids training [Bako et al. 2017].

Each encoder block has two convolution layers with a 3×3 spatial footprint, each followed by batch normalization [Ioffe and Szegedy 2015] and Exponential Linear Unit (ELU) activation [Clevert et al. 2015]. The last stage in the encoder block is downsampling with 2×2 max pooling. We increase the number of channels (tensor depth) by 32 at each successive block starting with 32 in the first encoder block and reaching 160 at the bottleneck. Encoder blocks have skip connections to the corresponding decoder blocks relaying high-frequency details to the decoder. The bottleneck is similar to an encoder block but excludes max pooling and skip connections.

The first stage in the decoder block is a 2×2 nearest-neighbor upsampling operation. The upsampled activations are concatenated with the skip connection and projected to the same size as the encoder output using a 1×1 convolution layer [Szegedy et al. 2015]. The decoder block includes a single 3×3 convolution layer resulting in three such layers at each scale, excluding the bottleneck, which has two convolution layers.

Batch Normalization: While batch normalization has been successfully applied to U-Net [Çiçek et al. 2016], recent recurrent variants tend to avoid it or replace it with a layer norm. With our frame recurrent network we observe that batch norm achieves significantly better training convergence, even with direct prediction.

3.2 Filter Network

The filter network has a similar topology to the feature extraction network with a series of downsampling filters followed by upsampling filters with skip connections between them. The pair of downsampling and upsampling filters at each scale are coupled to the output of the corresponding the decoder block in the filter extraction network.

Each filter uses the activations from the decoder block to predict a 3×3 kernel that is applied to the input image. Similar to Bako et al. [2017] we use a 1×1 convolution layer with softmax activation to predict the kernel resulting in normalized weights. The input filter predicts 18 normalized filter weights corresponding to 3×3 filters with 9 weights each. These filters are applied to I_a and I_w, respectively and the results are summed to produce a single image. The subsequent downsampling filters apply a 3×3 kernel to a single image. The last stage in each downsampling filter is a 2×2 average pooling operation. The bottleneck filter excludes this pooling operation.

The first stage in each upsampling filter is bilinear upsampling, following which the image is filtered and combined with the skip connection. The upsampling filters use 10 filter weights, 9 weights for the 3×3 filter kernel and one for scaling the skip connection. We use average pooling and bilinear upsampling in the filtering network as it results in better image quality. On the other hand we use max pooling and nearest neighbor upsampling in the feature extraction network as they are computationally cheaper and do not significantly impact feature extraction.

4 TRAINING

We train our network on blocks of $N_f \times N_x \times N_y$ pixels, where $N_x = N_y = 256$ are the spatial dimensions of the block and $N_f = 8$ is the number of frames (time steps). Each block is extracted from a sequence of rendered frames that belong to the same camera shot. Our training dataset includes a collection of sequences from different scenes as discussed in Section 6.

The network weights are initialized following He et al. [2015] with a uniform distribution. At each training iteration, we evaluate the network on a mini-batch of 64 blocks for each time step and then back propagate the loss through all time steps. At the beginning of each iteration, we initialize the warped previous frame I_w to the same value as the input frame I_a. Initializing I_w to zero produces comparable results except for the first few warm-up frames. We use the recent Ranger optimizer [Wright 2019] that combines Rectified Adam [Liu et al. 2019] and Lookahead [Zhang et al. 2019] with default parameters and a learning rate of 0.0005.
4.1 Loss

We use a loss function L that combines a spatial loss L_s and a temporal loss L_t. The spatial loss is the L_1 loss commonly used in denoising and super-resolution networks, computed over the $N_x \times N_y$ spatial pixels and N_t time steps in a block:

$$L_s = \frac{1}{N_x N_y} \sum_{i=1}^{N_t} \sum_{k=1}^{N_x N_y} \left| o_{i,k}^t - r_{i,k}^t \right|,$$

where $o_{i,k}^t$ is the output color at pixel i and time step k and r is the corresponding reference color rendered with 256 samples. The temporal loss is the mean absolute error in the temporal gradient and aims to achieve temporal stability:

$$L_t = \frac{1}{(N_t - 1) N_x} \sum_{k=2}^{N_t} \sum_{i=1}^{N_x} \left| \phi_{i,k}^t - \phi_{i,k-1}^t \right|,$$

where ϕ and φ are the reconstructed and reference color values from the warped previous frame. Our quantization approach targets GPU architectures that support accelerated tensor computations with 8-bit and 4-bit integers, such as Nvidia Turing [2018]. The throughput of tensor operations on Turing scales inversely with the bit width, where 8-bit computations have $2 \times$ the throughput and 4-bit computations have $4 \times$ the throughput of half precision. This gives us the flexibility to select a different trade-off between precision and throughput at different stages in our network.

We quantify all layers of the feature extraction network to use 4-bit weights and activations, except the first convolution layer, which uses 8-bit weights and 4-bit activations. As previously observed with other networks [Choi et al. 2018; Zhang et al. 2018; Zhu et al. 2016], having the input layer at a higher precision leads to a significant improvement in the loss. We use per-channel symmetric quantization for the weights and affine per-layer quantization for the activations [Krishnamoorthi 2018]. This approach achieves good results with 4-bit quantization with a relatively small overhead discussed later in this section. When the outputs of two layers are concatenated together, we use the same quantization range for both the activations as shown in Figure 4, ensuring a uniform quantization range for the input to the next convolution layer.

5 QUANTIZATION

Our quantization approach targets GPU architectures that support accelerated tensor computations with 8-bit and 4-bit integers, such as Nvidia Turing [2018]. The throughput of tensor operations on...
The mapping of quantized integer weights and activations u, v to their real values w, x is given by
\[
\begin{align*}
 w &= s_w u, \\
 x &= s_x (v - z),
\end{align*}
\] (3)
where s_w is a per-channel scale (step size) for the quantized weights, s_x is a per-layer scale for the quantized activations and z is the zero point. We can then represent the convolution for a single channel as:
\[
y = \sum w_i x_i + b_i,
\]
where b_i is the bias. Substituting with Equations 3 and 4 we get:
\[
y = s_w s_x \left(\sum u_i v_i - \sum u_i z \right) + b_i,
\]
\[
= a \sum u_i v_i + c_i,
\]
where $a = s_w s_x$ and $c_i = b_i - a \sum u_i z$, represents a single-precision floating point bias that can be precomputed.

Figure 4 shows the convolution and activation layers for a single channel along with their numeric formats. The convolutions constitute the majority of the computations but can be mapped to the tensor cores on Turing that can efficiently evaluate 4-bit multiplications and accumulate the result in a 32-bit integer. An additional floating-point MAC scales the convolution output by a and introduces the bias c, following which an ELU activation is computed with single-precision floating point. A final MAC operation then maps the floating-point activation back to a 4-bit integer.

The activations are quantized using a function $Q(x, l, u)$ that maps an activation x in the range $[l, u]$ to a quantized integer x_q in the range $[M_l, M_u]$. For a b-bit integer, $M_l = -2^{b-1}$, $M_u = 2^{b-1} - 1$ and $M = M_l + M_u$ is the number of quantization levels. Following Jacob et al. [2018], we adjust the quantization range such that a zero value gets quantized without error, preserving zero-padded data. The adjusted range $[l_a, u_a]$ is derived as follows:
\[
l_a = s \left\lfloor \frac{l}{s} \right\rfloor, \quad (5)
\]
\[
u_a = l_a + s M,
\]
where $s = \frac{u-a}{M}$ is the quantization step size and a common term for both s_w and s_x. The quantization function Q is then given by
\[
x_q = \begin{cases}
\lfloor \frac{x}{s} \rfloor + z & \text{if } l_a \leq x \leq u_a \\
M_l & \text{if } x < l_a \\
M_u & \text{if } x > u_a,
\end{cases}
\] (7)
where $z = M_l - \frac{l_a}{s}$ is the zero point introduced earlier in Equation 4.

5.1 Trained Quantization

We initially train our network with full precision and then quantize the weights and activations by fine tuning the network with simulated quantization [Jacob et al. 2018]. Training with simulated quantization achieves significant improvements over post-training quantization, especially with 4-bit precision [Krishnamoorthi 2018]. Simulated quantization applies a quantization followed by a dequantization in the forward pass, introducing quantization errors while maintaining and updating the weights as un-quantized variables.

The simulated quantization function $Q'(x, l, u)$ can be derived from Equations 4 and 7:
\[
Q'(x, l, u) = s (Q(x, l, u) - z)
\] (8)

While Jacob et al. [2018] use the moving averages of the minimum and maximum activations in a batch to derive the quantization thresholds l and u, we adopt a more recent approach [Esser et al. 2019; Jain et al. 2019] where the quantization thresholds are derived from trained variables.

Following Jain et al. [2019], we train the thresholds in log space using variables t_l and t_u, such that $I = -e^{t_l}$ and $u = e^{t_u}$ to improve stability with quantized training. We derive the gradient of Q' for backpropagation, using a straight through estimator [Bengio 2013] for rounding operations i.e. $\frac{d}{dx} [x] = 1$. For reference, we provide the equations for the gradients in Appendix A. We initialize $t_l = \ln(1)$ and $t_u = \ln(3)$, where $l = -1$ corresponds to the lower limit of the ELU activation and $u = 3$ is a value that we have chosen based on experimenting with $u = 6$ [Krizhevsky 2010] and $u = 3$.

We use the same quantization functions Q and Q' for the weights but enforce a symmetric range by setting $l = -u$. Unlike the activations we did not derive the quantization threshold from a trained variable. Instead we set u to the maximum absolute value of the weights corresponding to a channel.

5.2 Batch Normalization

It is common practice to eliminate the batch normalization layer in the inference network by folding the layer parameters into the weights and bias of the preceding convolution layer. The folded weights and bias are given by:
\[
w_{\text{inference}} = \frac{\gamma}{\sigma} w, \\
b_{\text{inference}} = \beta - \frac{\gamma}{\sigma} \mu,
\]
where μ and σ are the moving average of the batch mean and standard deviation and γ and β are the trained scale and bias respectively. While scaling the weights by $\lambda = \frac{\sigma}{\mu}$ we also scale the quantization threshold by the same amount. This has no impact on quantization error as $Q(\lambda w, \lambda l, \lambda l) = Q(w, l, l)$. During trained quantization, we freeze the values of γ and β and use the moving average of the batch mean and variance computed during the initial training.

5.3 Filtering Network

As discussed in Section 3.2, the filter network includes a 1×1 convolution layer to predict the filter kernels. We quantize the weights of this layer to 8-bit using trained quantization but we do not quantize the activations (filter kernel) as all filtering operations are computed with single-precision floating-point.

5.4 Computation Costs

Although the focus of our paper is high-quality reconstruction with quantization, we provide some data to support the feasibility of high performance 4-bit inference. Table 1 lists the number of MAC operations per pixel for the QW-Net network and the corresponding numeric formats.
We also list the additional overhead for quantization which is less than 1% of the total computations. This includes one MAC per channel for scaling and biasing the convolution output and another MAC for quantizing the activations. The overhead of kernel prediction and filtering is close to 2%, while 4-bit convolutions account for 95% of the computations. Table 1 also lists the number of operations for direct prediction with a comparable U-Net network. We assume single-precision floats for the filtering network as well as the U-Net network since we recompute the image in tone-mapped space, which leaves very little precision headroom with 16-bit floats as shown in Figure 2. The computational cost of the ELU and softmax activation functions are not included in this table even though it can be significant depending on the performance of transcendental operations on the GPU. This cost could be avoided through a different choice of activation such as LReLU [Maas et al. 2013] for the filter extraction network and linear activation for the kernel prediction layers [Mildenhall et al. 2018].

To further study the feasibility of a 4-bit network, we implemented a convolution layer in CUDA with 32 input and output channels. This represents the second and last layer in the feature extraction network which are the most expensive. We also benchmarked a similar convolution layer in NVIDIA TensorRT which is a general-purpose inference runtime. Both these implementations were evaluated on a TITAN RTX GPU and utilized tensor cores. Table 2 shows the execution time with different numeric formats at a 1080p resolution. We see a 2x performance gain going from 8-bit integers to 4-bit integers using our custom kernel, which is in-line with the expected performance on a Turing GPU. A similar trend is observed with the 8-bit and half precision convolutions in TensorRT. Unfortunately, TensorRT does not support 4-bit convolutions.

<table>
<thead>
<tr>
<th>Network</th>
<th>INT4</th>
<th>INT8</th>
<th>FP32</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-Net</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Conv</td>
<td>2304</td>
<td>3.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoder</td>
<td>37344</td>
<td>50.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decoder</td>
<td>33472</td>
<td>45.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool / Upsample</td>
<td>404</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Layer</td>
<td>96</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>70912</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QW-Net</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Conv</td>
<td>2304</td>
<td>3.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoder</td>
<td>37344</td>
<td>49.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decoder</td>
<td>33472</td>
<td>44.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantization</td>
<td>387</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel Prediction</td>
<td>1358</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool / Upsample</td>
<td>28</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter</td>
<td>99</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>70816</td>
<td>3662</td>
<td>514</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Multiply-Accumulate (MAC) operations per pixel.

Table 2. Execution time for a single convolution operation.

6. RESULTS

We train and evaluate our network (QW-Net) and a comparable direct prediction network (U-Net) using images rendered with Unreal Engine 4 (UE4) [2019]. The direct prediction U-Net is the same as the feature-extraction network but with an additional 1x1 convolution layer at the output to directly produce the reconstructed color. In Section 6.1 we describe our modifications to the game engine for our data-acquisition pipeline. Section 6.2 provides an overview of the datasets and the methodology used for training. In Section 6.3 we evaluate the training convergence of QW-Net and U-Net and present some ablation studies. Finally, in Section 6.4 we compare the image quality of our network against TAA and U-Net.

6.1 Data Acquisition

We generated our training and test datasets using a modified version of UE4. Obtaining large-scale datasets that are representative of modern game workloads is a challenging task because most game engines cannot produce reference images with the sampling density that we require. Therefore, we render an image sequence with one sample per pixel and repeat this multiple times with different sub-pixel viewport offsets. The frames from each render are then weighted by a 2D Blackman-Harris window and accumulated to produce a supersampled reference sequence. This accumulation is performed in a perceptually tone-mapped space [SMPTE 2014] in order to suppress “fireflies” caused by high-energy outliers in the image. The accumulated result is inverse tone mapped to bring it back into linear space. This is analogous to what most TAA implementations do when accumulating samples.

In order to produce matched results with each render we used cinematic UE4 demos that are fully keyframed. However, a significant issue we encountered is that randomness is deeply rooted in game engines. Although this can be a desirable property for games, it results in some assets behaving differently between sequence replays, for example, particle systems, procedural lights or materials and even some skinned characters. To ensure repeatable playback, we hard-coded the seeds of random number generators inside the engine and also turned off some particle systems, where were unable to achieve repeatable results. Moreover, particles in UE4 that do not include motion vectors are separately handled by the TAA shader based on a particle mask. In the future, we plan to incorporate this particle mask in our network.

For extracting image data and motion vectors from UE4 we made a few modifications to the renderer. Since our reconstruction technique is likely to be implemented at the same stage in the rendering pipeline as TAA, we disabled the stages that execute after TAA (e.g. motion blur, post-processing, fog, etc.) and modified the TAA shader to a “pass-through” function that skips temporal accumulation. To generate the motion vectors we rendered the image sequence with another modified TAA shader that encodes and writes the motion vectors to the output image. We extracted the output images using a linear 16-bit EXR [Kainz et al. 2004] format to preserve the dynamic range. We also biased the texture MIP-level by −1 to preserve high-frequency texture details.
6.2 Datasets

We prepared our datasets from four cinematic scenes publicly available for UE4. ZENGERDENT has large, smooth surfaces with well defined edges in an outdoor setting and a slow panning camera, making it the least challenging for reconstruction. INFLTRATOR features dark indoor scenes with several light sources, and highly specular materials, as well as an outdoor cityscape. KITE is a brightly-lit landscape sequence with a large amount of alpha-tested foliage. Finally, SHOWDOWN is another city scene with several reflective materials, which was not included in the training data. Both the training and test datasets consist of several image sequences, each having 120 continuous frames. The training set has 6 sequences from INFLTRATOR, 4 from KITE and 2 from ZENGERDENT. The test set contains 2 sequences of each of these three scenes, and an additional sequence from the SHOWDOWN demo which was excluded from training. We also set aside a sequence from the KITE demo for validation.

As discussed in Section 4, we use image blocks comprising 8 time steps (frames) of 256 × 256 pixel tiles to train the network. We extract a set of overlapping blocks by iterating over the pixels and frames with a stride of 192 in the spatial domain and 4 in time. The overlap approximately matches the receptive field of the network to better weight the edges of the block which are affected by zero padding. After extracting the blocks we cull approximately 50% of them based on the spatial loss (Equation 1), where blocks with a lower spatial loss have a lower threshold compared to inner layers (Encoder 6, Decoder 0).

After extracting the blocks we cull approximately 50% of them based on the spatial loss (Equation 1), where blocks with a lower spatial loss have a lower threshold compared to inner layers (Encoder 6, Decoder 0).

6.3 Network Analysis

Figure 5 shows the loss profile for QW-Net and U-Net with full-precision training. This aligns with earlier findings [Bako et al. 2017; Vogels et al. 2018] showing faster convergence with kernel prediction compared to direct prediction. Vogels et al. also provide theoretical insights into this behavior in a simplified convex setting.

We derived the quantized weights by first training our network for 500 epochs and then re-training the network with simulated quantization. Figure 6 shows that re-training converges quickly to a loss that is close to the full precision loss. With 8-bit quantization the loss converges to a value that is slightly below the full precision loss while with 4-bit quantization it remains slightly above. This small difference in loss values has little impact in terms of image quality as we show in the next section. Figure 6 also shows the training and validation loss for QW-Net with full precision, and QW-Net-R trained with single-precision float versus QW-Net re-trained with 4-bit quantization.

We also studied the impact of reduced precision at the input layer of the feature extraction network, by quantizing this layer to 4 bits and 8 bits. Figure 7 shows that re-training converges quickly to a value that is close to the full precision loss. The encoder and decoder layers are numbered from the input to the output. Layers closer to the inputs and outputs (Encoder 1, Decoder 6) have a lower threshold compared to inner layers (Encoder 6, Decoder 0).
We include a qualitative and quantitative comparison of the recon-
SSIM using a reference image rendered with 256 samples per pixel.

Our choice of higher precision 8-bit filter kernels is motivated by
the experiment shown in Figure 9, where we filter a high-frequency
image with 4-bit and 8-bit quantized Gaussian filter kernels. The
4-bit filter shows clear artifacts which would be unacceptable for
high quality reconstruction.

instead of 8 bits, while the remaining layers were quantized to 4 bits
as usual. This resulted in a significant increase in loss as shown in
Figure 8, highlighting the importance of higher input precision.

The results of QW-Net are also noticeably sharper, especially in
the KITE scene. The bottom row of the INFILTRATOR scene in
Figure 10 also shows a color shift around the collar. QW-Net on the
other hand cannot produce a color shift, since it predicts a single
set of kernels that are applied to all color channels. The top row of
the SHOWDOWN scene shows a region where some ghosting is
observed with all reconstruction techniques but to a lesser degree
with QW-Net.

While these figures show selected frames, we observe superior
quality metrics for all sequences with QW-Net. Figure 11 plots the
per-frame metrics for an example sequence from KITE. It shows
a notable drop in quality around frame 100, which is the result of
a large disoccluded region where temporal supersampling has to
discard pixel history. Even in this scenario, QW-Net stays above
U-Net in quality and both networks recover quickly after a few
frames. Figure 12 shows a region in the frame that becomes blurry
at the disocclusion event and regains sharpness in a few frames.

Inspired by the evaluation of video super-resolution methods
[Caballero et al. 2017; Sajjadi et al. 2018], we also show temporal
profiles in Figure 13. These images highlight temporal discontinuities
by tracing a column of pixels over a sequence of frames. While
the temporal profiles with QW-Net appear smooth and relatively
close to the reference, U-Net shows visible aliasing on the railing in
INFILTRATOR and temporal noise in the KITE scene.

6.4 Image Quality

We include a qualitative and quantitative comparison of the recon-
structed images using the default TAA implementation in UE4, direct
prediction (U-Net) and our network (QW-Net). Unless otherwise
noted, all QW-Net images were produced with 4-bit quantization.
QW-Net was trained for 500 epochs at full precision followed by
trained quantization for 1000 epochs while U-Net was trained for
1200 epochs at full precision. For each network we use the weights
from the epoch with the minimum training loss. We use highest-
quality settings when rendering images with TAA.

The convolutional networks used to quantify aliasing
phenomena such as jaggies or ghosting. However, we still find them
to be useful as they clearly show an order of quality across differ-
ett techniques. The problem of quantitatively analyzing aliasing
artifacts in synthetic images was studied by [Patney and Lefofin
2018], where they proposed a neural network to generate a metric
for aliasing.

For the quantitative analysis we use two widely-used metrics:
the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM) using a reference image rendered with 256 samples per pixel.
Unfortunately, neither of these metrics sufficiently penalizes local
phenomena such as jaggies or ghosting. However, we still find them
to be useful as they clearly show an order of quality across differ-
ent techniques. The problem of quantitatively analyzing aliasing
artifacts in synthetic images was studied by [Patney and Lefofin
2018], where they proposed a neural network to generate a metric
for aliasing.

Figures 1 and 10 show a few representative frames from our
dataset. With the exception of Figure 1, all results shown in this
paper are from the test dataset and were not used during training.
In Figure 1, TAA blurs the text on the sign significantly and loses
details on the railings as a result of color clamping. In Figure 10,
blurring is present in almost all TAA examples, with ZENGARDEN
also displaying severe ghosting artifacts.

The differences between QW-Net and U-Net on the other hand
are more subtle. However, looking at the quality metrics, we can see
that QW-Net consistently outperforms U-Net, and these differences
can also be perceived with some visual scrutiny. While U-Net can
remove aliasing in many cases, it fails on the railings in Figure 1.

7 CONCLUSIONS AND FUTURE WORK

Quantization can be a key to overcome the computational barriers of
deep neural networks for their wider application in real-time render-
ing. It has particularly good potential on modern GPU architectures
that accelerate reduced-precision tensor operations.

In this paper, we demonstrated a network where most of the
convolutions can be mapped to 4-bit operations without a significant
loss in dynamic range or quality. While preserving image quality with
4-bit quantization has been the main focus of our research, an
optimized implementation for real-time inference remains future
work. In addition, we plan to explore leveraging auxiliary features
like depth or normals, optimizing the activation functions to avoid
transcendental functions and reducing memory traffic by fusing
layers. A potential direction for future research is applying this
network for other problems in the field of image processing.

ACKNOWLEDGMENTS

We thank Epic Games, Inc. for providing Unreal Engine with demo
scenes for training and testing, and SungYe Kim for discussions and
insightful feedback. We also thank David Blythe and Charles Lingle
for supporting this research.

REFERENCES

Steve Bako, Thijs Vogels, Brian Mewilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-Predicting Convo-
lutional Networks for Denoising Monte Carlo Renderings. ACM Transactions on
Graphics 36, 4, Article 171 (July 2017), 14 pages.
Image Quality and System Performance, Yoichi Miyake and D. Rene Rasmussen
(Eds.), Vol. 5294. International Society for Optics and Photonics, SPIE, 231–238.
Fig. 10. Representative frames from our test datasets. We compare the visual quality of TAA, U-Net, and QW-Net (INT4), compared to the 256x supersampled reference. For each frame we magnify two areas of interest for easier comparison. We also show the PSNR metrics in the upper comparison rows and the SSIM values in the lower rows. TAA produces significantly lower metrics for all test frames, losing sharpness, and sometimes producing noticeable ghosting (e.g. ZENGARDEN, top row). U-Net closely approximates the reference, but is also consistently below QW-Net in quality metrics, and sometimes produces color shifts (e.g. INFILTRATOR, bottom row).
Fig. 11. Per-frame quality metrics on a continuous frame sequence from the KITE dataset. QW-Net consistently outperforms U-Net, with a slight degradation in the case of INT4.

Fig. 12. The loss of history samples due to disoccluded regions results in a short-term reduction in image quality. Before occlusion (left), at disocclusion (middle), 10th frame after disocclusion.

Fig. 13. Temporal Profiles from the INFILTRATOR (top) and KITE (bottom). QW-Net has a significantly smoother profile than U-Net, indicating better temporal coherence.

A APPENDIX A

In this section, we derive the gradients for our simulated quantization function. Expanding Equation 8 we get the simulated quantization function as:

\[x'_q = \begin{cases}
 s \left(\frac{x}{s} \right) & \text{if } l_a \leq x \leq u_a \\
 l_a & \text{if } x < l_a \\
 u_a & \text{if } x > u_a,
\end{cases} \]

(9)

where \(s \) is the quantization step, \(l_a \) and \(u_a \) are the adjusted range as defined in Equation 5 and 6. The local gradient with respect to trainable lower bound \(l_t \) is given by:

\[\frac{\partial x'_q}{\partial l_t} = \begin{cases}
 \theta \left(\frac{s}{l_t} - \frac{s}{l_a} \right) + M & \text{if } l_a \leq x \leq u_a \\
 \theta \left(0 - \frac{s}{l_t} \right) & \text{if } x < l_a \\
 \theta \left(\frac{s}{u_a} - \frac{s}{l_t} \right) & \text{if } x > u_a
\end{cases} \]

(10)

Similarly, the local gradient with respect to trainable upper bound \(u_t \) is:

\[\frac{\partial x'_q}{\partial u_t} = \begin{cases}
 \theta \left(-\frac{s}{u_t} + \frac{s}{u_a} \right) + M & \text{if } l_a \leq x \leq u_a \\
 \theta \left(0 - \frac{s}{u_t} \right) & \text{if } x < l_a \\
 \theta \left(-\frac{s}{u_t} + \frac{s}{l_t} \right) & \text{if } x > u_a
\end{cases} \]

(11)