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Fig. 1. A comparison of different reconstruction techniques on a frame from the INFILTRATOR scene with PSNR (top row) and SSIM (bottom row) metrics.
TAA has the worst reconstruction quality with excessive blurring followed by direct prediction with U-Net. QW-Net produces the best results with quality
comparable to brute force sampling with 256 samples per pixel.

Neural networks are often quantized to use reduced-precision arithmetic,
as it greatly improves their storage and computational costs. This approach
is commonly used in image classification and natural language processing
applications. However, using a quantized network for the reconstruction
of HDR images can lead to a significant loss in image quality. In this paper,
we introduce QW-Net, a neural network for image reconstruction, in which
close to 95% of the computations can be implemented with 4-bit integers.
This is achieved using a combination of two U-shaped networks that are
specialized for different tasks, a feature extraction network based on the U-
Net architecture, coupled to a filtering network that reconstructs the output
image. The feature extraction network has more computational complexity
but is more resilient to quantization errors. The filtering network, on the
other hand, has significantly fewer computations but requires higher pre-
cision. Our network recurrently warps and accumulates previous frames
using motion vectors, producing temporally stable results with significantly
better quality than TAA, a widely used technique in current games.
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1 INTRODUCTION
Synthesizing computer-generated imagery involves two key func-
tions: sampling the incident radiance on an image plane and apply-
ing a reconstruction filter to produce the final image [Cook et al.
1984]. If the incident radiance is undersampled, high-frequency
components resulting from visibility discontinuities or specular
lighting can appear as aliasing in the reconstructed image. To re-
duce aliasing, production renderers typically apply supersampling
with a large number of samples per pixel. On the other hand, real-
time applications rely on a combination of radiance prefiltering and
specialized image reconstruction techniques. Temporal antialiasing
(TAA) [Jimenez et al. 2012; Karis 2014; Yang et al. 2009] is an image
reconstruction technique that is widely used in games today. TAA
uses renderer-generated motion vectors to gather and accumulate
samples from previous frames, effectively increasing the number of
samples per pixel. However, TAA is susceptible to ghosting artifacts,
loss of detail, and temporal instability [Yang et al. 2020].

Convolutional neural networks offer a promising alternative for
image reconstruction, and have been successfully applied to closely
related fields such as denoising [Bako et al. 2017; Chaitanya et al.
2017; Vogels et al. 2018]. The U-Net [Ronneberger et al. 2015] ar-
chitecture is particularly well suited for such tasks as it processes
features at multiple scales, achieving a large receptive field and more
effective filtering with a relatively low computational cost.
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Fig. 2. Minimum contrast step for a 1000 nit display with different numeric
formats. The step size with 8-bit integers exceeds the human contrast sen-
sitivity threshold even with perceptual quantization (PQ) to minimize the
perceived error [SMPTE 2014].

With the hardware acceleration of 8-bit and 4-bit tensor com-
putations on GPUs [NVIDIA 2018], quantizing the weights and
activations of such a network can be key to achieve real-time per-
formance, without compromising its expressive power. However,
quantization errors can severely impact the image quality, especially
with high-dynamic-range content. We can see from Figure 2 that the
minimum contrast step with 8-bit integers, far exceeds the human
contrast sensitivity threshold [Barten 2003] on a high-dynamic-
range display.

We introduce a novel network called QW-Net that addresses this
issue by using a combination of two networks, a feature extraction
network and a filtering network. The feature extraction network
is based on U-Net and can be quantized to 4-bit integers as feature
detection is more resilient to quantization errors. The filtering net-
work is another U-shaped network that uses the extracted features
at each scale to predict filters. The filtering operations require a
higher precision but involve significantly fewer computations than
the feature extraction network. The name QW-Net is motivated
by the coupled U-shaped networks resembling a W, as well as the
quantized nature of our feature extraction network.
Our network combines the advantages of U-Net and kernel pre-

diction networks [Bako et al. 2017]. It achieves a large receptive field
with just a few layers, similar to the U-Net, while avoiding artifacts
like color shift and requiring significantly less training time, similar
to kernel prediction networks [Vogels et al. 2018]. Moreover, our
network temporally refines the reconstructed image by recurrently
warping and accumulating previous frames.

Although our motivation for using 4-bit convolutions is improved
inference performance, realizing the full potential of a quantized
network requires extensive exploration of various implementation
aspects such as tensor layouts, tile sizes, kernel fusion and con-
straints imposed by the hardware, which are beyond the scope of
this paper. Our goal is to show the feasibility of a heavily quantized
network for image reconstruction using a novel network topology
that preserves image quality. To the best of our knowledge, this is
the first 4-bit network applied to image processing. We evaluate
image quality using simulated quantization and include an analysis
of the computational cost and the performance of 4-bit convolutions
in section 5.4.

2 BACKGROUND

2.1 Antialiasing and Image Reconstruction
On a fundamental level, the sampling theorem defines the minimum
sampling frequency of a signal as twice its maximum frequency,
also known as the Nyquist limit [Proakis and Manolakis 2006]. How-
ever, the radiance sampled on a virtual camera’s sensor is often not
band-limited: while geometric surfaces are continuous, the visibility
function of light transport is not. This makes the application of low-
pass reconstruction filters necessary to remove higher frequencies
from the sampled signal in order to suppress aliasing [Mitchell and
Netravali 1988], which commonly manifests as the “wagon wheel
effect” or flickering in the temporal and jagged edges or “fireflies”
in the spatial domain. Aliasing can also be reduced by prefiltering
high-frequency terms in the sampled radiance, for example, specu-
lar lighting [Kaplanyan et al. 2016]. The term antialiasing broadly
encompasses prefiltering, sampling and reconstruction techniques
that seek to avoid or remove undersampling artifacts.
A straightforward way to overcome aliasing is supersampling,

evaluating multiple sub-pixel radiance samples, but this also in-
creases the cost of rendering. A cheaper alternative called Multisam-
pling antialiasing (MSAA) [Akeley 1993] was one of the earliest an-
tialiasing methods to be supported by graphics accelerators, where
shading is sampled once per pixel, while visibility is sampled at a sub-
pixel granularity. However, MSAA is less commonly used in modern
games, where deferred shading has become a dominant technique.
Deferred shading is evaluated once per pixel and therefore does not
benefit from MSAA. Moreover, MSAA can significantly increase
the storage cost for intermediate shading data in the G-buffer. In-
stead, modern games typically rely on post-sampling reconstruction
techniques to suppress aliasing. Early examples of such a technique
include morphological antialiasing (MLAA) [Reshetov 2009] and
its derivatives [Jimenez et al. 2012] that detect jagged edges and
smooth them to improve image quality. However, these approaches
can miss fine geometry that is not sufficiently sampled within a
single frame often resulting in aliasing in the temporal domain.

Temporal antialiasing (TAA) is a more recent family of techniques
that leverage frame-to-frame coherence to amortize supersampling
over time [Yang et al. 2009]. Like supersampling these techniques
can reduce aliasing caused by high-frequency components of the
visibility function as well as shading. TAA uses motion vectors to re-
project a sample position in the current frame to its previous location
in a temporal accumulation buffer [Nehab et al. 2007], from which
a color value can be gathered and blended with the current pixel,
effectively adding more samples. However, the gathered color may
not match the current pixel, for example, a surface that is currently
visible might be occluded in the previous frame or a shaded value
may change from one frame to another due to moving shadows and
reflections. Most TAA implementations use heuristics like neighbor-
hood clamping [Karis 2014; Salvi 2016] to reject mismatched colors
as they can cause severe ghosting artifacts. Unfortunately this does
not eliminate all ghosting. Moreover, if the rejection heuristic is too
aggressive the temporal accumulation becomes ineffective. Yang et
al. [2020] survey recent TAA techniques and provide an in-depth
analysis of the image quality trade-offs with these heuristics.
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2.2 Neural Networks for Reconstruction
In recent years there has been a growing interest in applying neural
networks to problems in rendering. One area in particular that
has seen rapid advances is denoising of Monte Carlo renderings,
which aims to remove noise from simulated distributed effects like
soft shadows, indirect lighting, etc. While neural networks have
been previously explored for denoising natural images [Burger et al.
2012], Kalantari et al. [2015] were the first to apply it to Monte Carlo
rendering, using a multi-layer perceptron to drive the parameters
of feature-based denoising filters. Later, Bako et al. [2017] used
a convolutional neural network to predict the filter kernel itself,
achieving significantly better results.

Chaitanya et al. [2017] introduced an alternate approach, using a
network based on U-Net [Ronneberger et al. 2015] to directly predict
the denoised image. By introducing recurrent connections inside a
U-Net network they were the first to demonstrate temporally stable
results at interactive rates. U-Net also has the advantage of achiev-
ing a large receptive field using a multi-scale architecture, which is
crucial for denoising sparsely sampled images. On the other hand,
achieving a large receptive field with a single predicted kernel [Bako
et al. 2017] is impractical, as the complexity of filtering and the last
prediction layer grows significantly with the filter size [Gharbi et al.
2019]. This limitation was overcome by Vogels et al. [2018] by pre-
dicting filter kernels at different scales using multiple deep residual
networks [He et al. 2016]. The filtered images were progressively up-
sampled and blended using predicted weights to produce a denoised
result. They compared their approach against a variant of the direct
prediction network of Chaitanya et al. observing over-blurring and
color-shift artifacts with direct prediction. They also discussed the
possibility of using a U-Net to efficiently predict kernels at different
scale. The concurrent work of Hasselgren et al. [2020] uses such a
network with a feedback loop to achieve temporally stable results.
Along similar lines, we use a U-Net network to predict filter ker-
nels for reconstruction but instead of applying independent filters
at each scale, we use a filter network that resembles U-Net, pro-
gressively filtering and re-sampling the image. By incorporating
predicted filters in between each downsampling and upsampling
step, we can better reconstruct feature details at each scale.

Image reconstruction is a more general problem of producing an
antialiased image from point samples. In real-time applications, the
input to a reconstruction technique like TAA is denoised using filters,
specialized for effects like shadows, reflections or ambient occlusion.
Neural networks are also promising for image reconstruction as
initially demonstrated by Marco Salvi [2017] using a U-Net with a
warped feedback loop. Kaplanyan et al. [2019] also used a recurrent
U-Net to reconstruct a peripheral image for foveated rendering from
a very sparse set of samples. We compare our approach against a
U-Net based direct prediction network, but with a simpler form
of recurrence [Hasselgren et al. 2020; Sajjadi et al. 2018] using the
warped output image instead of a hidden state.

Recently, a combined real-time image reconstruction technique
called Deep Learning Super Sampling (DLSS) [Liu 2020] was intro-
duced, but the details of the underlying network are unknown. Con-
current to our work, Xiao et al. [2020] introduced a reconstruction

technique based on U-Net. Using an optimized inference implemen-
tation they reconstruct a 1080p image in 18 to 20 ms on a high-end
GPU. In comparison, DLSS reconstructs a 4K image in under 2 ms.
Both these approaches can reconstruct images at a higher resolution
than the input render. In this paper we reconstruct a supersampled
image at the same resolution, focusing on achieving high quality,
temporally stable results with aggressive quantization.

2.3 Quantized Networks
A full-precision network can be quantized either post-training or
by training the network with simulated quantization. With post-
training quantization, a network is quantized using the distribution
of trained weights and by measuring the distribution of activations
on a sample dataset, a process known as calibration. For example,
TensorRT [Migacz 2017] quantizes weights and activations by mini-
mizing the Kullback-Leibler (KL) divergence between the quantized
and un-quantized distributions. TensorFlow [Jacob et al. 2018] on
the other hand maps the range of the weight tensor and the aver-
age range of the activations computed over several batches, to the
range of the quantized format. Unfortunately post training quantiza-
tion shows as significant degradation in accuracy with 4-bit integers
(INT4) and lower precisions [Jacob et al. 2018; Krishnamoorthi 2018].

Jacob et al. [2018] proposed an alternate quantization-aware train-
ing approach that simulates quantization errors during training,
achieving significantly better accuracy. Simulated quantization in-
troduces quantization errors in the forward pass by quantizing the
weights and activations and dequantizing them back to the origi-
nal range. However, in the backward pass, weights and biases are
updated with floating point precision without any loss in precision.
The choice of threshold values for quantizing weights and ac-

tivations greatly impacts the accuracy of the network. While Ja-
cob et al. [2018] derived the quantization thresholds based on a mea-
surement of the tensor range, Jain et al.[2019] and Esser et al. [2019]
showed that the quantization thresholds could be trained to further
improve accuracy. They derived the gradient of the quantization
function applying a straight through estimator [Bengio 2013] for the
gradient of round/ceil operations but without approximating these
operations with an identity function. This allowed the thresholds
to grow (favoring larger dynamic range) or shrink (favoring higher
precision) based on the gradients.

A majority of existing work on reduced precision networks use a
uniform quantization scheme where the quantized values are evenly
spaced [Lin et al. 2016; Nayak et al. 2019; Zhou et al. 2017, 2016].
A uniform quantizer can be further classified into asymmetric and
symmetric quantizers. An asymmetric quantizer applies an affine
transformation with a scale and a zero-point to map values in the
floating-point range to the integer range. In a symmetric quantizer,
the zero point is set to 0 reducing the affine mapping to a linear
mapping. The symmetric quantizer avoids the overhead of han-
dling zero-points making it computationally efficient. A large body
of work explores binary and ternary neural networks, where the
weights and/or activations are quantized to binary or ternary val-
ues [Courbariaux et al. 2015, 2016; Rastegari et al. 2016; Zhu et al.
2016]. These networks push quantization to its limits but also lose a
significant amount of accuracy.
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Fig. 3. The QW-Net architecture including the feature extraction network (top left) and the filtering network (bottom-left). The number of output channels is
shown at the bottom of each stage of the network. The details of the encoder and decoder blocks as well as the filter stages are shown on the right.

3 QW-NET
Figure 3 shows the details of the QW-Net architecture, comprising
the feature extraction network and the filtering network. The input
to our network is a sequence of images and per-pixel motion vectors
generated by the renderer. The network processes images in tone-
mapped space, similar to the approach of Bako et al. [2017]. However,
instead of the log transform, we use the inverse of the perceptual
Electro-Optical Transfer Function (EOTF) [SMPTE 2014] which is a
better match for the human contrast sensitivity model. We map the
EOTF to a luminance range of up to a 1000 nits. Besides achieving
better results with high-dynamic-range content, tone mapping also
reduces the overall perceptual error with 8-bit and 4-bit integer
formats.
Similar to TAA, the input images are rendered with a sub-pixel

jitter sequence producing a spatial distribution of samples over
multiple frames. In order to leverage this distribution and temporally
accumulate samples, we apply the frame-recurrent approach of
Sajjadi et al. [2018], where the previously reconstructed frame is
warped and concatenated with the input frame, forming the current
input to the network. Assuming Ue is the feature extraction network
and Uf is the filter network, the reconstructed output 𝑰𝑘𝒐 at frame k
is given by

𝑰𝑘𝒐 = Uf
(
Ue

(
𝑰𝑘𝒂 , 𝑰

𝑘
𝒘

)
, 𝑰𝑘𝒂 , 𝑰

𝑘
𝒘

)
𝑰𝑘𝒘 = W

(
𝑰𝑘−1𝒐 , 𝑰𝑘𝒗

)
,

where 𝑰𝑘𝒂 is the aliased input image, 𝑰𝑘𝒘 is the warped previous
output, 𝑰𝑘𝒗 is a 2D grid of motion vectors andW is a bilinear warp
function.

3.1 Feature Extraction
The feature extraction network is based on the U-Net architecture
which includes a series of encoder blocks that downsample the
image followed by decoder blocks that reverse this process. The
first stages in the network convert the input images 𝑰𝒂 and 𝑰𝒘 to
grayscale and compute their gradient magnitudes. The two gradient
magnitude images are concatenated with 𝑰𝒂 and 𝑰𝒘 forming the
input for the first convolution layer. The gradients highlight aliased
regions in the image which aids training [Bako et al. 2017].

Each encoder block has two convolution layers with a 3×3 spatial
footprint, each followed by batch normalization [Ioffe and Szegedy
2015] and Exponential Linear Unit (ELU) activation [Clevert et al.
2015]. The last stage in the encoder block is downsampling with
2 × 2 max pooling. We increase the number of channels (tensor
depth) by 32 at each successive block starting with 32 in the first
encoder block and reaching 160 at the bottleneck. Encoder blocks
have skip connections to the corresponding decoder blocks relaying
high-frequency details to the decoder. The bottleneck is similar to
an encoder block but excludes max pooling and skip connections.
The first stage in the decoder block is a 2 × 2 nearest-neighbor

upsampling operation. The upsampled activations are concatenated
with the skip connection and projected to the same size as the
encoder output using a 1× 1 convolution layer [Szegedy et al. 2015].
The decoder block includes a single 3×3 convolution layer resulting
in three such layers at each scale, excluding the bottleneck, which
has two convolution layers.

Batch Normalization: While batch normalization has been suc-
cessfully applied to U-Net [Çiçek et al. 2016], recent recurrent vari-
ants tend to avoid it or replace it with a layer norm. With our frame
recurrent networkwe observe that batch norm achieves significantly
better training convergence, even with direct prediction.
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3.2 Filter Network
The filter network has a similar topology to the feature extrac-
tion network with a series of downsampling filters followed by
upsampling filters with skip connections between them. The pair
of downsampling and upsampling filters at each scale are coupled
to the output of the corresponding decoder block in the feature
extraction network.
Each filter uses the activations from the decoder block to pre-

dict a 3 × 3 kernel that is applied to the input image. Similar to
Bako et al. [2017] we use a 1 × 1 convolution layer with softmax
activation to predict the kernel resulting in normalized weights. The
input filter predicts 18 normalized filter weights corresponding to
two 3 × 3 filters with 9 weights each. These filters are applied to 𝑰𝒂
and 𝑰𝒘 respectively and the results are summed to produce a single
image. The subsequent downsampling filters apply a 3 × 3 kernel
to a single image. The last stage in each downsampling filter is a
2 × 2 average pooling operation. The bottleneck filter excludes this
pooling operation.
The first stage in each upsampling filter is bilinear upsampling,

following which the image is filtered and combined with the skip
connection. The upsampling filters use 10 filter weights, 9 weights
for the 3 × 3 filter kernel and one for scaling the skip connection.
We use average pooling and bilinear upsampling in the filtering
network as it results in better image quality. On the other hand we
use max pooling and nearest neighbor upsampling in the feature
extraction network as they are computationally cheaper and do not
significantly impact feature extraction.

4 TRAINING
We train our network on blocks of 𝑁𝑡 × 𝑁𝑥 × 𝑁𝑦 pixels, where
𝑁𝑥 = 𝑁𝑦 = 256 are the spatial dimensions of the block and 𝑁𝑡 = 8
is the number of frames (time steps). Each block is extracted from
a sequence of rendered frames that belong to the same camera
shot. Our training dataset includes a collection of sequences from
different scenes as discussed in Section 6.
The network weights are initialized following He et al. [2015]

with a uniform distribution. At each training iteration, we evaluate
the network on a mini-batch of 64 blocks for each time step and then
back propagate the loss through all time steps. At the beginning of
each iteration, we initialize the warped previous frame Iw to the
same value as the input frame Ia. Initializing Iw to zero produces
comparable results except for the first few warm-up frames. We use
the recent Ranger optimizer [Wright 2019] that combines Rectified
Adam [Liu et al. 2019] and Lookahead [Zhang et al. 2019] with
default parameters and a learning rate of 0.0005.

4.1 Loss
We use a loss function 𝐿 that combines a spatial loss 𝐿𝑠 and a tempo-
ral loss 𝐿𝑡 . The spatial loss is the 𝐿1 loss commonly used in denoising
and super-resolution networks, computed over the 𝑁𝑠 = 𝑁𝑥𝑁𝑦 spa-
tial pixels and 𝑁𝑡 time steps in a block:

𝐿𝑠 =
1

𝑁𝑡𝑁𝑠

𝑁𝑡∑
𝑘=1

𝑁𝑠∑
𝑖=1

���𝒐𝑘𝑖 − 𝒓𝑘𝑖

��� , (1)
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Fig. 4. Convolution layers with 4-bit activations and weights. When the
outputs of quantizers are concatenated together (e.g. quantizers A and B)
we ensure that they use the same quantization range.

where 𝒐𝑘
𝑖
is the output color at pixel i and time step k and 𝒓 is

the corresponding reference color rendered with 256 samples. The
temporal loss is the mean absolute error in the temporal gradient
and aims to achieve temporal stability:

𝐿𝑡 =
1

(𝑁𝑡 − 1)𝑁𝑠

𝑁𝑡∑
𝑘=2

𝑁𝑠∑
𝑖=1

���(𝒐𝑘𝑖 − 𝝓𝑘𝑖

)
−
(
𝒓𝑘𝑖 − 𝝍𝑘𝑖

)��� , (2)

where 𝝓 and 𝝍 are the reconstructed and reference color values from
the warped previous frame. Our temporal loss is similar to the one
used by Chaitanya et al. [2017] with the difference that we compute
the temporal gradient w.r.t the warped previous frame, highlighting
regions that are temporally mismatched. This is possible since we
assume the availability of motion vectors from the renderer.

The combined loss is then given by 𝐿 = 0.3𝐿𝑠 + 0.7𝐿𝑡 . We derived
this ratio of 𝐿𝑠 and 𝐿𝑡 experimentally starting with an equal blend
and then decreasing the spatial loss contribution until the temporal
quality was acceptable.

5 QUANTIZATION
Our quantization approach targets GPU architectures that support
accelerated tensor computations with 8-bit and 4-bit integers, such
as Nvidia Turing [2018]. The throughput of tensor operations on
Turing scales inversely with the bit width, where 8-bit computa-
tions have 2× the throughput and 4-bit computations have 4× the
throughput of half precision. This gives us the flexibility to select
a different trade-off between precision and throughput at different
stages in our network.
We quantize all layers of the feature extraction network to use

4-bit weights and activations, except the first convolution layer,
which uses 8-bit weights and 4-bit activations. As previously ob-
served with other networks [Choi et al. 2018; Zhang et al. 2018; Zhu
et al. 2016], having the input layer at a higher precision leads to a
significant improvement in the loss. We use per-channel symmet-
ric quantization for the weights and affine per-layer quantization
for the activations [Krishnamoorthi 2018]. This approach achieves
good results with 4-bit quantization with a relatively small overhead
discussed later in this section. When the outputs of two layers are
concatenated together, we use the same quantization range for both
the activations as shown in Figure 4, ensuring a uniform quantiza-
tion range for the input to the next convolution layer.
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The mapping of quantized integer weights and activations 𝑢, 𝑣 to
their real values𝑤 , 𝑥 is given by

𝑤 = 𝑠𝑤𝑢, (3)
𝑥 = 𝑠𝑥 (𝑣 − 𝑧), (4)

where 𝑠𝑤 is a per-channel scale (step size) for the quantized weights,
𝑠𝑥 is a per-layer scale for the quantized activations and 𝑧 is the zero
point. We can then represent the convolution for a single channel
as:

𝑦 =
∑

𝑤𝑖𝑥𝑖 + 𝑏𝑖 ,

where 𝑏𝑖 is the bias. Substituting with Equations 3 and 4 we get:

𝑦 = 𝑠𝑤𝑠𝑥

(∑
𝑢𝑖𝑣𝑖 −

∑
𝑢𝑖𝑧

)
+ 𝑏𝑖 ,

= 𝛼
∑

𝑢𝑖𝑣𝑖 + 𝑐𝑖 ,

where 𝛼 = 𝑠𝑤𝑠𝑥 and 𝑐𝑖 = 𝑏𝑖 − 𝛼
∑
𝑢𝑖𝑧, represents a single-precision

floating point bias that can be precomputed.
Figure 4 shows the convolution and activation layers for a single

channel along with their numeric formats. The convolutions con-
stitute the majority of the computations but can be mapped to the
tensor cores on Turing that can efficiently evaluate 4-bit multipli-
cations and accumulate the result in a 32-bit integer. An additional
floating-point MAC scales the convolution output by 𝛼 and intro-
duces the bias 𝑐 , following which an ELU activation is computed
with single-precision floating point. A final MAC operation then
maps the floating-point activation back to a 4-bit integer.

The activations are quantized using a functionQ(𝑥, 𝑙,𝑢) that maps
an activation 𝑥 in the range [𝑙, 𝑢] to a quantized integer 𝑥𝑞 in the
range [𝑀𝑙 , 𝑀𝑢 ]. For a 𝑏-bit integer, 𝑀𝑙 = −2𝑏−1, 𝑀𝑢 = 2𝑏−1 − 1
and𝑀 = 𝑀𝑙 +𝑀𝑢 is the number of quantization levels. Following
Jacob et al. [2018], we adjust the quantization range such that a zero
value gets quantized without error, preserving zero-padded data.
The adjusted range [𝑙𝑎, 𝑢𝑎] is derived as follows:

𝑙𝑎 = 𝑠

⌊
𝑙

𝑠

⌉
, (5)

𝑢𝑎 = 𝑙𝑎 + 𝑠𝑀, (6)

where 𝑠 = 𝑢−𝑙
𝑀

is the quantization step size and a common term for
both 𝑠𝑤 and 𝑠𝑥 . The quantization function Q is then given by

𝑥𝑞 =


⌊
𝑥
𝑠

⌉
+ 𝑧 if 𝑙𝑎 ≤ 𝑥 ≤ 𝑢𝑎

𝑀𝑙 if 𝑥 < 𝑙𝑎

𝑀𝑢 if 𝑥 > 𝑢𝑎,

(7)

where 𝑧 = 𝑀𝑙 − 𝑙𝑎
𝑠 is the zero point introduced earlier in Equation 4.

5.1 TrainedQuantization
We initially train our network with full precision and then quan-
tize the weights and activations by fine tuning the network with
simulated quantization [Jacob et al. 2018]. Training with simulated
quantization achieves significant improvements over post-training
quantization, especially with 4-bit precision [Krishnamoorthi 2018].
Simulated quantization applies a quantization followed by a de-
quantization in the forward pass, introducing quantization errors

while maintaining and updating the weights as un-quantized vari-
ables.
The simulated quantization function Q′(𝑥, 𝑙,𝑢) can be derived

from Equations 4 and 7:

Q′(𝑥, 𝑙,𝑢) = 𝑠 (Q(𝑥, 𝑙,𝑢) − 𝑧) (8)

While Jacob et al. [2018] use the moving averages of the minimum
and maximum activations in a batch to derive the quantization
thresholds 𝑙 and 𝑢, we adopt a more recent approach [Esser et al.
2019; Jain et al. 2019] where the quantization thresholds are derived
from trained variables.
Following Jain et al. [2019], we train the thresholds in log space

using variables 𝑡𝑙 and 𝑡𝑢 , such that 𝑙 = −𝑒𝑡𝑙 and 𝑢 = 𝑒𝑡𝑢 to improve
stability with quantized training. We derive the gradient of Q′ for
backpropagation, using a straight through estimator [Bengio 2013]
for rounding operations i.e. d

d𝑥 ⌊𝑥⌉ = 1. For reference, we provide the
equations for the gradients in Appendix A. We initialize 𝑡𝑙 = ln(1)
and 𝑡𝑢 = ln(3), where 𝑙 = −1 corresponds to the lower limit of the
ELU activation and 𝑢 = 3 is a value that we have chosen based on
experimenting with 𝑢 = 6 [Krizhevsky 2010] and 𝑢 = 3.

We use the same quantization functions Q and Q′ for the weights
but enforce a symmetric range by setting 𝑙 = −𝑢. Unlike the activa-
tions we did not derive the quantization threshold from a trained
variable. Instead we set 𝑢 to the maximum absolute value of the
weights corresponding to a channel.

5.2 Batch Normalization
It is common practice to eliminate the batch normalization layer
in the inference network by folding the layer parameters into the
weights and bias of the preceding convolution layer. The folded
weights and bias are given by:

𝑤inference =
𝛾

𝜎
𝑤,

𝑏inference = 𝛽 − 𝛾

𝜎
𝜇,

where 𝜇 and 𝜎 are the moving average of the batch mean and stan-
dard deviation and𝛾 and 𝛽 are the trained scale and bias respectively.
While scaling the weights by 𝜆 =

𝛾
𝜎 we also scale the quantization

threshold by the same amount. This has no impact on quantization
error as Q(𝜆𝑤, 𝜆𝑙, 𝜆𝑙) = Q(𝑤, 𝑙, 𝑙). During trained quantization, we
freeze the values of 𝛾 and 𝛽 and use the moving average of the batch
mean and variance computed during the initial training.

5.3 Filtering Network
As discussed in Section 3.2, the filter network includes a 1× 1 convo-
lution layer to predict the filter kernels. We quantize the weights of
this layer to 8-bit using trained quantization but we do not quantize
the activations (filter kernel) as all filtering operations are computed
with single-precision floating-point.

5.4 Computation Costs
Although the focus of our paper is high-quality reconstruction with
quantization, we provide some data to support the feasibility of
high performance 4-bit inference. Table 1 lists the number of MAC
operations per pixel for the QW-Net network and the corresponding
numeric formats.
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Table 1. Multiply-Accumulate (MAC) operations per pixel.

Network INT4 INT8 FP32 % Total

U-Net
Input Conv 2304 3.13
Encoder 37344 50.73
Decoder 33472 45.47
Pool / Upsample 404 0.55
Output Layer 96 0.13

Total 70912
QW-Net
Input Conv 2304 3.07
Encoder 37344 49.80
Decoder 33472 44.63
Quantization 387 0.52
Kernel Prediction 1358 1.81
Pool / Upsample 28 0.04
Filter 99 0.13

Total 70816 3662 514

We also list the additional overhead for quantization which is
less than 1% of the total computations. This includes one MAC per
channel for scaling and biasing the convolution output and another
MAC for quantizing the activations. The overhead of kernel predic-
tion and filtering is close to 2%, while 4-bit convolutions account for
95% of the computations. Table 1 also lists the number of operations
for direct prediction with a comparable U-Net network. We assume
single-precision floats for the filtering network as well as the U-
Net network since we reconstruct the image in tone-mapped space,
which leaves very little precision headroom with 16-bit floats as
shown in Figure 2. The computational cost of the ELU and softmax
activation functions are not included in this table even though it
can be significant depending on the performance of transcenden-
tal operations on the GPU. This cost could be avoided through a
different choice of activation such as LRelu [Maas et al. 2013] for
the feature extraction network and linear activation for the kernel
prediction layers [Mildenhall et al. 2018].
To further study the feasibility of a 4-bit network, we imple-

mented a convolution layer in CUDA with 32 input and output
channels. This represents the second and last layer in the feature
extraction network which are the most expensive. We also bench-
marked a similar convolution layer in NVIDIA TensorRT which is
a general-purpose inference runtime. Both these implementations
were evaluated on a TITAN RTX GPU and utilized tensor cores.
Table 2 shows the execution time with different numeric formats at
a 1080p resolution. We see a 2× performance gain going from 8-bit
integers to 4-bit integers using our custom kernel, which is in-line
with the expected performance on a Turing GPU. A similar trend is
observed with the 8-bit and half precision convolutions in TensorRT.
Unfortunately, TensorRT does not support 4-bit convolutions.

Table 2. Execution time for a single convolution operation.

Precision Level TensorRT(ms) Custom(ms)
FP16 1.03
INT8 0.61 0.29
INT4 0.14

6 RESULTS
We train and evaluate our network (QW-Net) and a comparable di-
rect prediction network (U-Net) using images rendered with Unreal
Engine 4 (UE4) [2019]. The direct prediction U-Net is the same as the
feature-extraction network but with an additional 1× 1 convolution
layer at the output to directly produce the reconstructed color. In
Section 6.1 we describe our modifications to the game engine for
our data-acquisition pipeline. Section 6.2 provides an overview of
the datasets and the methodology used for training. In Section 6.3
we evaluate the training convergence of QW-Net and U-Net and
present some ablation studies. Finally, in Section 6.4 we compare
the image quality of our network against TAA and U-Net.

6.1 Data Acquisition
We generated our training and test datasets using a modified ver-
sion of UE4. Obtaining large-scale datasets that are representative
of modern game workloads is a challenging task because most game
engines cannot produce reference images with the sampling den-
sity that we require. Therefore, we render an image sequence with
one sample per pixel and repeat this multiple times with different
sub-pixel viewport offsets. The frames from each render are then
weighted by a 2D Blackman-Harris window and accumulated to
produce a supersampled reference sequence. This accumulation is
performed in a perceptually tone-mapped space [SMPTE 2014] in
order to suppress “fireflies” caused by high-energy outliers in the
reference image. The accumulated result is inverse tone mapped to
bring it back into linear space. This is analogous to what most TAA
implementations do when accumulating samples.
In order to produce matched results with each render we used

cinematic UE4 demos that are fully keyframed. However, a signifi-
cant issue we encountered is that randomness is deeply rooted in
game engines. Although this can be a desirable property for games,
it results in some assets behaving differently between sequence
replays, for example, particle systems, procedural lights or materials
and even some skinned characters. To ensure repeatable playback,
we hard-coded the seeds of random number generators inside the
engine and also turned off some particle systems, where we were
unable to achieve repeatable results. Moreover, particles in UE4 that
do not include motion vectors are separately handled by the TAA
shader based on a particle mask. In the future, we plan to incorporate
this particle mask in our network.

For extracting image data and motion vectors from UE4 we made
a few modifications to the renderer. Since our reconstruction tech-
nique is likely to be implemented at the same stage in the rendering
pipeline as TAA, we disabled the stages that execute after TAA (e.g.
motion blur, post-processing, fog, etc.) and modified the TAA shader
to a “pass-through” function that skips temporal accumulation. To
generate the motion vectors we rendered the image sequence with
another modified TAA shader that encodes and writes the motion
vectors to the output image. We extracted the output images using
a linear 16-bit EXR [Kainz et al. 2004] format to preserve the dy-
namic range. We also biased the texture MIP-level by −1 to preserve
high-frequency texture details.
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Fig. 5. Loss versus epochs during full-precision training.

6.2 Datasets
We prepared our datasets from four cinematic scenes publicly avail-
able for UE4. ZENGARDEN has large, smooth surfaces with well de-
fined edges in an outdoor setting and a slow panning camera, making
it the least challenging for reconstruction. INFILTRATOR features
dark indoor scenes with several light sources, and highly specular
materials, as well as an outdoor cityscape. KITE is a brightly-lit
landscape sequence with a large amount of alpha-tested foliage.
Finally, SHOWDOWN is another city scene with several reflective
materials, which was not included in the training data. Both the
training and test datasets consist of several image sequences, each
having 120 continuous frames. The training set has 6 sequences
from INFILTRATOR, 4 from KITE and 2 from ZENGARDEN. The
test set contains 2 sequences of each of these three scenes, and
an additional sequence from the SHOWDOWN demo which was
excluded from training. We also set aside a sequence from the KITE
demo for validation.

As discussed in Section 4, we use image blocks comprising 8 time
steps (frames) of 256×256 pixel tiles to train the network. We extract
a set of overlapping blocks by iterating over the pixels and frames
with a stride of 192 in the spatial domain and 4 in time. The overlap
approximately matches the receptive field of the network to better
weight the edges of the block which are affected by zero padding.
After extracting the blocks we cull approximately 50% of them based
on the spatial loss (Equation 1), where blocks with a lower spatial
loss are culled with a higher probability. After culling, we end up
with 13712 blocks which are used for training.

6.3 Network Analysis
Figure 5 shows the loss profile for QW-Net and U-Net with full-
precision training. This aligns with earlier findings [Bako et al.
2017; Vogels et al. 2018] showing faster convergence with kernel
prediction compared to direct prediction. Vogels et al. also provide
theoretical insights into this behavior in a simplified convex setting.
We derived the quantized weights by first training our network

for 500 epochs and then re-training the network with simulated
quantization. Figure 6 shows that re-training converges quickly to
a loss that is close to the full precision loss. With 8-bit quantization
the loss converges to a value that is slightly below the full precision
loss while with 4-bit quantization it remains slightly above. This
small difference in loss values has little impact in terms of image
quality as we show in the next section. Figure 6 also shows the
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Fig. 6. On the left, we show that training loss for both 4-bit and 8-bit
quantization converges quickly to a value that is close to the full precision
loss. On the right, we show how the upper quantization thresholds𝑢 change
during reduced precision re-training. The encoder and decoder layers are
numbered from the input to the output. Layers closer to the inputs and
outputs (Encoder 1, Decoder 6) have a lower threshold compared to inner
layers (Encoder 6, Decoder 0).
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Fig. 7. QW-Net-R trained with single-precision float versus QW-Net re-
trained with 4-bit quantization.

1.6E-3

1.8E-3

2.0E-3

2.2E-3

2.4E-3

0 100 200 300 400 500

Validation Loss

QW-Net (INT4 INPUT)

QW-Net (INT8 INPUT)

1.4E-3

1.6E-3

1.8E-3

2.0E-3

2.2E-3

2.4E-3

0 100 200 300 400 500

Training Loss

QW-Net (INT4 INPUT)

QW-Net (INT8 INPUT)

Fig. 8. QW-Net re-trained with 4-bit and 8-bit quantization at the input of
the feature extraction network.

quantization threshold 𝑢 for the activations from a few selected
layers in the network. The layers closest to the input and the output
seem to adapt to a lower threshold compared to the inner layers.
To verify that our network is not over-parameterized, we eval-

uated a network called QW-Net-R, where we set the tensor depth
of the first stage to 24 (instead of 32) and increased it by 24 at
each following stage. As a result, the computational complexity of
QW-Net-R is approximately half of QW-Net. Figure 7 shows that
QW-Net quantized to 4-bits still converges to a significantly lower
loss than QW-Net-R without any quantization.

We also studied the impact of reduced precision at the input layer
of the feature extraction network, by quantizing this layer to 4 bits
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4-bit filter 8-bit filter

Fig. 9. A comparison of filtering quality with a Gaussian kernel quantized
to 4-bits and 8-bits.

instead of 8 bits, while the remaining layers were quantized to 4 bits
as usual. This resulted in a significant increase in loss as shown in
in Figure 8, highlighting the importance of higher input precision.

Our choice of higher precision 8-bit filter kernels is motivated by
the experiment shown in Figure 9, where we filter a high-frequency
image with 4-bit and 8-bit quantized Gaussian filter kernels. The
4-bit filter shows clear artifacts which would be unacceptable for
high quality reconstruction.

6.4 ImageQuality
We include a qualitative and quantitative comparison of the recon-
structed images using the default TAA implementation in UE4, direct
prediction (U-Net) and our network (QW-Net). Unless otherwise
noted, all QW-Net images were produced with 4-bit quantization.
QW-Net was trained for 500 epochs at full precision followed by
trained quantization for 1000 epochs while U-Net was trained for
1200 epochs at full precision. For each network we use the weights
from the epoch with the minimum training loss. We use highest-
quality settings when rendering images with TAA.
For the quantitative analysis we use two widely-used metrics:

the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM) using a reference image rendered with 256 samples per pixel.
Unfortunately, neither of these metrics sufficiently penalizes local
phenomena such as jaggies or ghosting. However, we still find them
to be useful as they clearly show an order of quality across differ-
ent techniques. The problem of quantitatively analyzing aliasing
artifacts in synthetic images was studied by [Patney and Lefohn
2018], where they proposed a neural network to generate a metric
for aliasing.
Figures 1 and 10 show a few representative frames from our

dataset. With the exception of Figure 1, all results shown in this
paper are from the test dataset and were not used during training.
In Figure 1, TAA blurs the text on the sign significantly and loses
details on the railings as a result of color clamping. In Figure 10,
blurring is present in almost all TAA examples, with ZENGARDEN
also displaying severe ghosting artifacts.
The differences between QW-Net and U-Net on the other hand

are more subtle. However, looking at the quality metrics, we can see
that QW-Net consistently outperforms U-Net, and these differences
can also be perceived with some visual scrutiny. While U-Net can
remove aliasing in many cases, it fails on the railings in Figure 1.

The results of QW-Net are also noticeably sharper, especially in
the KITE scene. The bottom row of the INFILTRATOR scene in
Figure 10 also shows a color shift around the collar. QW-Net on the
other hand cannot produce a color shift, since it predicts a single
set of kernels that are applied to all color channels. The top row of
the SHOWDOWN scene shows a region where some ghosting is
observed with all reconstruction techniques but to a lesser degree
with QW-Net.

While these figures show selected frames, we observe superior
quality metrics for all sequences with QW-Net. Figure 11 plots the
per-frame metrics for an example sequence from KITE. It shows
a notable drop in quality around frame 100, which is the result of
a large disoccluded region where temporal supersampling has to
discard pixel history. Even in this scenario, QW-Net stays above
U-Net in quality and both networks recover quickly after a few
frames. Figure 12 shows a region in the frame that becomes blurry
at the disocclusion event and regains sharpness in a few frames.
Inspired by the evaluation of video super-resolution methods

[Caballero et al. 2017; Sajjadi et al. 2018], we also show temporal
profiles in Figure 13. These images highlight temporal discontinuities
by tracing a column of pixels over a sequence of frames. While
the temporal profiles with QW-Net appear smooth and relatively
close to the reference, U-Net shows visible aliasing on the railing in
INFILTRATOR and temporal noise in the KITE scene.

7 CONCLUSIONS AND FUTURE WORK
Quantization can be a key to overcome the computational barriers of
deep neural networks for their wider application in real-time render-
ing. It has particularly good potential on modern GPU architectures
that accelerate reduced-precision tensor operations.
In this paper, we demonstrated a network where most of the

convolutions can bemapped to 4-bit operations without a significant
loss in dynamic range or quality. While preserving image quality
with 4-bit quantization has been the main focus of our research, an
optimized implementation for real-time inference remains future
work. In addition, we plan to explore leveraging auxiliary features
like depth or normals, optimizing the activation functions to avoid
transcendental functions and reducing memory traffic by fusing
layers. A potential direction for future research is applying this
network for other problems in the field of image processing.

ACKNOWLEDGMENTS
We thank Epic Games, Inc. for providing Unreal Engine with demo
scenes for training and testing, and members of the Intel Advanced
Research and Technology group for discussions and insightful feed-
back. We also thank David Blythe and Charles Lingle for supporting
this research.

REFERENCES
Kurt Akeley. 1993. RealityEngine Graphics. In Proc. ACM SIGGRAPH. 109–116.
Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan Novák, Alex Harvill,

Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-Predicting Convo-
lutional Networks for Denoising Monte Carlo Renderings. ACM Transactions on
Graphics 36, 4, Article 97 (July 2017), 14 pages.

Peter G. J. Barten. 2003. Formula for the contrast sensitivity of the human eye. In
Image Quality and System Performance, Yoichi Miyake and D. Rene Rasmussen
(Eds.), Vol. 5294. International Society for Optics and Photonics, SPIE, 231–238.

ACM Trans. Graph., Vol. 39, No. 6, Article 231. Publication date: December 2020.



231:10 • Manu Mathew Thomas, Karthik Vaidyanathan, Gabor Liktor, and Angus G. Forbes

Fig. 10. Representative frames from our test datasets. We compare the visual quality of TAA, U-Net, and QW-Net (INT4), compared to the 256× supersampled
reference. For each frame we magnify two areas of interests for easier comparison. We also show the PSNR metrics in the upper comparison rows and the
SSIM values in the lower rows. TAA produces significantly lower metrics for all test frames, losing sharpness, and sometimes producing noticeable ghosting
(e.g. ZENGARDEN, top row). U-Net closely approximates the reference, but is also consistently below QW-Net in quality metrics, and sometimes produces
color shifts (e.g. INFILTRATOR, bottom row).

ACM Trans. Graph., Vol. 39, No. 6, Article 231. Publication date: December 2020.



A Reduced-Precision Network for Image Reconstruction • 231:11

47

48

49

50

51

0 50 100 150 200

PSNR

U-Net

QW-Net (INT8)

QW-Net (INT4)

0.992

0.994

0.996

0.998

0 50 100 150 200

SSIM

U-Net

QW-Net (INT8)

QW-Net (INT4)

Fig. 11. Per-frame quality metrics on a continuous frame sequence from
the KITE dataset. QW-Net consistently outperforms U-Net, with a slight
degradation in the case of INT4.

Fig. 12. The loss of history samples due to disoccluded regions results in a
short-term reduction in image quality. Before occlusion (left), at disocclusion
(middle), 10th frame after disocclusion.

Fig. 13. Temporal Profiles from the INFILTRATOR (top) and KITE (bottom).
QW-Net has a significantly smoother profile than U-Net, indicating better
temporal coherence.

Yoshua Bengio. 2013. Estimating or Propagating Gradients Through Stochastic Neurons.
arXiv preprint arXiv:1305.2982 (2013).

H. C. Burger, C. J. Schuler, and S. Harmeling. 2012. Image denoising: Can plain neural
networks compete with BM3D?. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2392–2399.

Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro Acosta, Johannes Totz,
Zehan Wang, and Wenzhe Shi. 2017. Real-Time Video Super-Resolution with Spatio-
Temporal Networks andMotion Compensation. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 4778–4787.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruc-
tion of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder.
ACM Transactions on Graphics 36, 4, Article 98 (July 2017), 12 pages.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalak-
shmi Srinivasan, and Kailash Gopalakrishnan. 2018. PACT: Parameterized Clipping
Activation for Quantized Neural Networks. arXiv preprint arXiv:1805.06085 (2018).

Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, and O. Ronneberger. 2016. 3D U-
Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Medical
Image Computing and Computer-Assisted Intervention (MICCAI), Vol. 9901. Springer,
424–432.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and ac-
curate deep network learning by exponential linear units (ELUs). arXiv preprint
arXiv:1511.07289 (2015).

Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed Ray Tracing.
In Computer Graphics (Proc. ACM SIGGRAPH), Vol. 18. 137–145.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. BinaryConnect:
Training deep neural networks with binary weights during propagations. arXiv
preprint arXiv:1511.00363 (2015).

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
2016. Binarized neural networks: Training deep neural networks with weights and
activations constrained to +1 or -1. arXiv preprint arXiv:1602.02830 (2016).

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy,
and Dharmendra S Modha. 2019. Learned step size quantization. arXiv preprint
arXiv:1902.08153 (2019).

Epic Games. 2019. Unreal Engine 4.24 on GitHub. https://github.com/EpicGames/
UnrealEngine/tree/4.24

Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019.
Sample-Based Monte Carlo Denoising Using a Kernel-Splatting Network. ACM
Transactions on Graphics 38, 4, Article 125 (July 2019), 12 pages.

J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and A. Lefohn. 2020. Neural Temporal
Adaptive Sampling and Denoising. Computer Graphics Forum 39, 2 (2020), 147–155.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. Proc.
IEEE International Conference on Computer Vision (ICCV) (Dec 2015), 1026–1034.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (Jun 2016), 770–778.

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167
(2015).

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and training
of neural networks for efficient integer-arithmetic-only inference. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2704–2713.

Sambhav R Jain, Albert Gural, MichaelWu, and Chris HDick. 2019. Trained quantization
thresholds for accurate and efficient fixed-point inference of deep neural networks.
arXiv preprint arXiv:1903.08066 (2019).

Jorge Jimenez, Jose I. Echevarria, Tiago Sousa, and Diego Gutierrez. 2012. SMAA:
Enhanced Morphological Antialiasing. Computer Graphics Forum 31, 2 (2012), 355–
364.

Florian Kainz, Rod Bogart, and Drew Hess. 2004. The OpenEXR image file format. In
GPU Gems, Randima Fernando (Ed.). Addison-Wesley Reading, Chapter 26.

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning
Approach for Filtering Monte Carlo Noise. ACM Transactions on Graphics, 34, 4,
Article 122 (2015), 12 pages.

A. S. Kaplanyan, S. Hill, A. Patney, and A. Lefohn. 2016. Filtering Distributions of Nor-
mals for Shading Antialiasing. In Proc. High-Performance Graphics (HPG). 151–162.

Anton S. Kaplanyan, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev, Todd
Goodall, and Gizem Rufo. 2019. DeepFovea: Neural Reconstruction for Foveated
Rendering and Video Compression Using Learned Statistics of Natural Videos. ACM
Transactions on Graphics 38, 6, Article 212 (Nov. 2019), 13 pages.

Brian Karis. 2014. High Quality Temporal Supersampling. SIGGRAPH 2014 Advances
in Real-Time Rendering in Games course. http://advances.realtimerendering.com/
s2014/

Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks for
efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342 (2018).

Alex Krizhevsky. 2010. Convolutional deep belief networks on CIFAR-10. https:
//www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf

ACM Trans. Graph., Vol. 39, No. 6, Article 231. Publication date: December 2020.

https://github.com/EpicGames/UnrealEngine/tree/4.24
https://github.com/EpicGames/UnrealEngine/tree/4.24
http://advances.realtimerendering.com/s2014/
http://advances.realtimerendering.com/s2014/
https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf
https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf


231:12 • Manu Mathew Thomas, Karthik Vaidyanathan, Gabor Liktor, and Angus G. Forbes

Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. 2016. Fixed Point
Quantization of Deep Convolutional Networks. In Proc. International Conference on
Machine Learning (ICML). 2849–2858.

Edward Liu. 2020. DLSS 2.0 - Image Reconstruction for Real-time Rendering with Deep
Learning. In GPU Technology Conference (GTC). https://developer.nvidia.com/gtc/
2020/video/s22698-vid

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,
and Jiawei Han. 2019. On the Variance of the Adaptive Learning Rate and Beyond.
arXiv preprint arXiv:1908.03265 (2019).

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. 2013. Rectifier nonlinearities
improve neural network acoustic models. In Proc. ICML Workshop on Deep Learning
for Audio, Speech and Language Processing.

Szymon Migacz. 2017. 8-bit Inference with TensorRT. In GPU Technology Conference
(GTC). https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-
inference-with-tensorrt.pdf

Ben Mildenhall, Jonathan T Barron, Jiawen Chen, Dillon Sharlet, Ren Ng, and Robert
Carroll. 2018. Burst Denoising with Kernel Prediction Networks. In Proc. IEEE
Computer Vision and Pattern Recognition (CVPR). 2502–2510.

Don P. Mitchell and Arun N. Netravali. 1988. Reconstruction Filters in Computer
Graphics. SIGGRAPH Computer Graphics 22, 4 (1988), 221–228.

Prateeth Nayak, Degan Zhang, and Sek Chai. 2019. Bit Efficient Quantization for Deep
Neural Networks. arXiv preprint arXiv:1910.04877 (2019).

Diego Nehab, Pedro V. Sander, Jason Lawrence, Natalya Tatarchuk, and John R. Isidoro.
2007. Accelerating Real-time Shading with Reverse Reprojection Caching. In Graph-
ics Hardware. 25–35.

NVIDIA. 2018. NVIDIA Turing GPU Architecture Whitepaper. https://www.nvidia.
com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

Anjul Patney and Aaron Lefohn. 2018. Detecting Aliasing Artifacts in Image Sequences
Using Deep Neural Networks. In Proc. High-Performance Graphics (HPG). Article 4,
4 pages.

John G. Proakis and Dimitris K Manolakis. 2006. Digital Signal Processing (4th Edition).
Prentice Hall.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-
NET: ImageNet classification using binary convolutional neural networks. In Proc.
European Conference on Computer Vision (ECCV). 525–542.

Alexander Reshetov. 2009. Morphological Antialiasing. In Proc. High-Performance
Graphics (HPG). 109–116.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. arXiv preprint arXiv 1505.04597
(2015).

Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew Brown. 2018. Frame-recurrent
video super-resolution. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 6626–6634.

Marco Salvi. 2016. An excursion in temporal supersampling. InGame Developer’s Confer-
ence (GDC). https://developer.download.nvidia.com/gameworks/events/GDC2016/
msalvi_temporal_supersampling.pdf

Marco Salvi. 2017. Deep Learning: The Future of Real-Time Rendering?. In ACM
SIGGRAPH Courses: Open Problems in Real-Time Rendering. https://openproblems.
realtimerendering.com/s2017/index.html

SMPTE. 2014. ST 2084:2014 - SMPTE Standard - High Dynamic Range Electro-Optical
Transfer Function of Mastering Reference Displays. ST 2084:2014 (2014), 1–14.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Go-
ing deeper with convolutions. In Proc. IEEE Computer Vision and Pattern Recognition
(CVPR). 1–9.

Thijs Vogels, Fabrice Rousselle, Brian Mcwilliams, Gerhard Röthlin, Alex Harvill, David
Adler, Mark Meyer, and Jan Novák. 2018. Denoising with Kernel Prediction and
Asymmetric Loss Functions. ACM Transactions on Graphics 37, 4, Article 124 (July
2018), 15 pages.

Less Wright. 2019. New Deep Learning Optimizer, Ranger: Synergistic combination
of RAdam + LookAhead for the best of both. https://medium.com/@lessw/new-
deep-learning-optimizer-ranger-synergistic-combination-of-radam-lookahead-
for-the-best-of-2dc83f79a48d

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton
Kaplanyan. 2020. Neural supersampling for real-time rendering. ACM Transactions
on Graphics 39, 4, Article 142 (2020), 12 pages.

Lei Yang, Shiqiu Liu, and Marco Salvi. 2020. A Survey of Temporal Antialiasing
Techniques. Computer Graphics Forum 39 (2020), 607–621.

Lei Yang, Diego Nehab, Pedro V. Sander, Pitchaya Sitthi-amorn, Jason Lawrence, and
Hugues Hoppe. 2009. Amortized Supersampling. ACM Transactions on Graphics 28,
5, Article 135 (Dec. 2009), 12 pages.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. 2018. LQ-Nets:
Learned Quantization for Highly Accurate and Compact Deep Neural Networks. In
Proc. European Conference on Computer Vision (ECCV). 365–382.

Michael R. Zhang, James Lucas, Geoffrey Hinton, and Jimmy Ba. 2019. Lookahead
Optimizer: k steps forward, 1 step back. arXiv preprint arXiv:1907.08610 (2019).

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. 2017. Incremental
Network Quantization: Towards Lossless CNNs with Low-Precision Weights. In
International Conference on Learning Representations (ICLR).

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. 2016.
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low
Bitwidth Gradients. arXiv preprint arXiv:1606.06160 (2016).

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. 2016. Trained Ternary
Quantization. arXiv preprint arXiv:1612.01064 (2016).

A APPENDIX A
In this section, we derive the gradients for our simulated quantiza-
tion function. Expanding Equation 8 we get the simulated quantiza-
tion function as:

𝑥 ′𝑞 =


𝑠
⌊
𝑥
𝑠

⌉
if 𝑙𝑎 ≤ 𝑥 ≤ 𝑢𝑎

𝑙𝑎 if 𝑥 < 𝑙𝑎

𝑢𝑎 if 𝑥 > 𝑢𝑎,

(9)

where 𝑠 is the quantization step, 𝑙𝑎 and 𝑢𝑎 are the adjusted range
as defined in Equation 5 and 6. The local gradient with respect to
trainable lower bound 𝑡𝑙 is given by:
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(10)

Similarly, the local gradient with respect to trainable upper bound
𝑡𝑢 is:
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