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ABSTRACT

This paper presents analysis/synthesis strategies for gener-
ating abstract, creative representations via the camera in-
put on a mobile device. Mobile devices are well suited for
interactive video processing since they are simultaneously
capable of image capture, display, and manipulation. Anal-
ysis/synthesis methods are particularly powerful in interac-
tive arts projects as they enable even drastic manipulations
of the input image while still maintaining fundamental as-
pects of its original identity. Moreover, by using abstract
synthesis elements (i.e., coherent elements larger than sin-
gle pixels), we are able to directly interact with the image
and to manipulate its final output. We describe some of the
exciting capabilities of video processing and interaction on
mobile devices and introduce a series of mobile applications
that use analysis/synthesis techniques.

1. INTRODUCTION

Nearly all modern smart phones and tablets are capable of
handling multimedia data, including video input and output.
Moreover, most mobile devices include dedicated GPUs that
are powerful enough to allow real-time manipulation of video.
These devices are also equipped with various sensors that
enable many interaction possibilities. This paper presents
an investigation of analysis/synthesis (hereafter, A/S) tech-
niques that take advantage of these these capabilities.

1.1. Analysis/synthesis techniques

A/S techniques provide a high level of manipulability in the
input signal without altering its fundamental identity. This
is the main reason why A/S techniques are extensively used
in creative audio processing (e.g. Vocoder, Autotune). But
few examples exist in the image or the video domain. Some
examples of previous work using A/S approaches for cre-
ative image manipulation include the computer-assisted mo-
saics of Kenneth Knowlton [1, 2]. And similar approaches
from other artists in the 60s, including Waldemar Cordeiro
[3], Charles Csuri, and James Shaffer [4], and the Japanese
Computer Technique Group (CGT), also make use of A/S

techniques [5]. More recent A/S related works include Robert
Silvers’ Photomosaics [6] and works of Golan Levin, such
as “Segmentation and Symptom,” [7] and “Floccular Por-
traits” [8]. Real-time installations using A/S approaches
have been created by Daniel Rozin in his collection of me-
chanical mirrors [9]. Jim Campbell’s “Low Resolution” se-
ries [10], and two of Rafael Lozano-Hemmer pieces in his
“Shadow Box” series, “Eye Contact” [11] and “Third Per-
son,” [12], are other examples of this relatively unexplored
technique.

1.2. Non-photorealistic rendering

An area of research closely related to our work in A/S tech-

niques is called “non-photorealistic rendering” (or NPR),

which aims to creatively interpret the raw data from real-

istic images and videos. NPR is primarily concerned with

automatically recreating the look of different styles of hand-

made paintings. In fact, most of the image-based NPR algo-

rithms are A/S processes, in which an input image is used

to calculate the position, color, orientation or texture of the

synthesis elements [13]. In a seminal paper, Haeberli demon-
strates different alternatives for abstract representation of
natural and synthetic images [14]. He explores the use of
different primitives, such as brush strokes, and successfully

mixes together automatic and semi-automatic techniques.

Stylization effects, including “mosaic,” “pixelate,” and “cu-

bism,” are now part of standard digital photo-manipulation

tools. These effects can be interpreted as A/S processes (al-

though they are usually not referred to as such).

One of the reasons why A/S methods for video have
failed to be as ubiquitous as their audio equivalents involves
the problem of temporal coherence [15]. Temporal coher-
ence is lost when video frames are analyzed independently,
producing a set of drawing primitives that jump arbitrar-
ily from place to place as every new frame is processed.
Different alternatives to guarantee temporal coherence on
non-photorealistically rendered animations have been ex-
plored. For instance, Litwinowicz describes a technique
to create image animations that seem “hand-painted” from
live action video [16]. He uses the edge map of an input



image to constrain the length of the strokes, then applies
an optical flow algorithm to ensure the coherence of the
strokes between successive frames. Bénard, et al., has ex-
plored the use of dynamic textures and Gabor noise primi-
tives to create time-coherent stylizations [17, 18]. In “An-
imosaics,” Smith, Liu and Klein explore rules that govern
the smooth motion of mosaic tiles in animated mosaics [19].
They examine not only the coherence between individual el-
ements, but also the cohesion in the movement of groupings
of tiles. A detailed review of techniques and content of non-
photorealistic animation can be found on the papers from
Bénard, Bousseau and Thollot [15], and Agrawal [20].

1.3. Art in mobile devices

Many artists have taken advantage of the various possibil-
ities of mobile devices and have recognized their poten-
tial to engage audiences in novel ways. This potential in-
cludes both the increasing computational power of current
hardware and also the distribution model of the applications
that can be easily downloaded to run on them. Well-known
artists, such as Scott Snibbe [21] and Lisa Jevbratt [22],
have chosen mobile devices as the target platforms or their
latest creations, and digital art festivals are nowadays likely
to include a specialized category for mobile devices. How-
ever, most of the art-oriented applications that involve video
processing use simple pixel-based techniques, and more-
over include only a limited amount of interaction. Much
of the processing methods in these art projects involve basic
color space conversions, linear filters, or geometrical trans-
formations. Recent work by the Creative Coding Lab at
the University of Arizona explores various methods to cre-
atively manipulate video, mostly based on A/S approaches,
and implements these approaches on mobile devices. In our
work, each video frame is analyzed and then recreated after
incorporating the creative manipulations generated by user
input. For programming of the mobile devices we utilize the
Aluminum framework, a powerful multimedia codebase de-
veloped at the Creative Coding Lab that gives developers ac-
cess to current, low-level features of OpenGL and OpenGL
ES [23]. Specifically, the framework provides access to the
GPU capabilities of modern iOS mobile devices while sim-
plifying most of the objective-C configuration code that iOS
devices require.

The power of A/S strategies is based on their ability to
distort the input image parameters in various ways before
reconstructing an output. In the next section, we illustrate
some of the parameters that can potentially be manipulated
before this reconstruction.

2. ABSTRACT MIRRORS

Humans give meaning to images by grouping the existing
elements and associating them with previous knowledge.
There are many different ways in which picture elements
can be grouped [24], and these different grouping princi-
ples can be exploited to create abstract mirrors, or non-
photorealistic representations of a raw video capture.

2.1. Regions

A region can be defined as a group of connected pixels that
share a similar color, luminance, or texture. Figure 1 shows
different ways of re-drawing regions that were detected in
an analysis stage. Manipulations can then occur before the
reconstruction of the image.

Fig. 1. Different ways to present identified regions: (a) re-
placing regions with ellipses; (b) re-drawing the regions af-
ter modifying their Fourier descriptor.

2.2. Edges and lines

The identification of contours is fundamental to object per-
ception [24]. A complete new family of examples can be



created if, in the analysis stage, parametric curves are fitted
to the edge of the map on the input image (Figure 2).

Fig. 2. Edges of the image recreated with straight lines.

2.3. Orientation

The human visual system can also separate regions based
on orientation. A direct mapping from gray value to line
orientation produces the results shown in Figure 3.
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Fig. 3. Gray-levels are mapped to line orientation.

2.4. Size

Objects can also be grouped into different regions by size.
Areas represented with larger objects will be perceived as
darker than areas represented with smaller objects (assum-
ing dark objects on white background). Figure 4 shows a
visual experiment using size as a mapping parameter. A
gray-scaled image is used as input and also as the synthesis
object.

2.5. Density

We perceptually separate regions that have similar element
density [24]. Also, a region can be perceived as darker than
others if there is more object density in that region. This

Fig. 4. The gray-scale levels are mapped to the size of the
synthesis element.

is the basic concept behind many dithering techniques [13].
In Figure 5 the dot density is changed to recreate the gray
levels of the input.

Fig. 5. Image represented by manipulating the density of
objects.

2.6. Connectedness

Figure 6 shows different ways of using the output of a dither-
ing algorithm to join the resultant black points with lines
following different paths. As stated by Ware [24], connect-
edness is a strong grouping principle. Small differences in
the way that points are connected can drastically change the
look of the result.



Fig. 6. Two images showing different ways to connect dots.

3. MOBILE IMPLEMENTATIONS

In this section we show how we use some of the grouping
principles described above to implement interactive abstract
mirrors that work in real-time on current mobile devices.
Specifically, we present three different applications that we
have implemented using the Aluminum framework [23].

3.1. The Fluid Automata application

Fluid Automata is an interactive fluid simulation and vector
field visualization application based on cellular automata
systems [25]. A flow of energy is distributed through the
image using local rules that are inspired by the physics of
fluids (although the fluids are inherently non-realistic due
to the fact that there is no mass conservation condition and
because the fluid is compressible). The system is illustrated
on Figure 7. Different alternatives for interaction with mo-
bile devices have been explored. Energy can be added to
the system by tapping the screen or moving a finger across
the screen to change the direction of vectors in the fluid sys-
tem. Figure 8 shows one of the possible outputs of the sys-
tem. Fluid Automata has been presented as an independent
artistic piece [26] and also as a visual accompaniment for
dynamic music compositions [27].

3.2. The Angle Shift application

Figure 3 illustrates how orientation can be used a a discrim-
inator for regions. Angle Shift is an interactive application
that combines orientation, color and motion. The synthe-
sis elements are thin lines that change position, direction,
and color according to the current camera input. The new
state of each line is updated from the previous one in the
CPU using the camera image and the interaction informa-
tion (touchscreen) as inputs. The updated information is
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Fig. 8. Running the application.

then sent to the GPU for drawing via modern OpenGL de-
mands. Figure 9 shows a block diagram of the system and
Figure 10 show an example of a typical output of the appli-
cation.
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Fig. 9. The Angle Shift System.



Fig. 10. The Angle Shift application running on an iPad.

3.3. The Meshflow application

In the Meshflow application a set of points evolves slowly
before finally morphing into the image of the camera input.
The motion is continuous and the position of each point di-
rectly evolves from its position in the previous frame [28].
Meshflow exploits some common expectations and charac-
teristics of the human visual system. On one hand, the im-
pression of having different grayscale values can be created
using only black dots on a white background simply by al-
tering the density of dots in a particular area. This halfton-
ing technique is common in print publications [29]. When
we are observing a grid, our expectation of regularity cre-
ates an impression of dimensionality, as shown for instance
in Figure 11. This characteristic has been used for centuries
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Fig. 11. A distorted grid gives the impression of dimension-
ality.

to represent three-dimensional objects in the plane. The
artist Marius Watz has created a series of grids that when
perturbed in their regularity creates a strong feeling of three
dimensionality [30]. In Meshflow, the nodes on the grid
are attracted to the darkest areas of the image, but the grid
structure is kept. The motion of the nodes is constrained by
physics laws that describe an attraction between neighbor
nodes and a drag force. Figure 12 shows the block diagram

of the application.
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Fig. 12. Block diagram of the Meshflow application

The gradient of the image is calculated using the So-
bel operator in the GPU. This information is then encoded
into two 8-bit channels and then read back into the CPU. In
the CPU, the previous values of the nodes of the grid are
updated using the gradient information and using the coor-
dinates of the interaction in the touchscreen. The geome-
try information is then sent back again to the GPU for final
rendering to the screen. Figure 13 shows the application
running in an iPad.

Fig. 13. The Meshflow application running on an iPad.

4. SUMMARY AND FUTURE WORK

We believe that A/S strategies are an effective means to gen-
erate creative mobile applications that function as abstract
mirrors. Using A/S techniques, an input video frame is re-
duced to a set of parameters, then those parameters are ma-
nipulated, and finally an abstract representation is created
with the modified parameters. In each of the examples pre-
sented here, the input information is not used to recreate
the image from scratch, but instead as a way to update the
previous state of the synthesis elements. This guarantees
temporal coherence on the output image. Temporal coher-
ence is a factor that has perhaps the strongest impact in the
perceived quality of an abstract animation. We are explor-
ing ways to measure the quality of temporal coherence, a



surprisingly difficult task. Some potential evaluations we
are exploring include: the displacement distribution of the
synthesis objects; the minimum jerk rule [31] for smooth-
ness evaluation; and the spatial dispersion of the direction
of motion. Part of our present research involves finding cor-
relations between these quantitative measurements and the
qualitative evaluations gathered via user studies.

In each of the three applications we presented, users in-
teract via the touchscreen. Future versions may also include
other sensors common to mobile devices (e.g., accelerom-
eters, gyroscopes, audio inputs) to manipulate various pa-
rameters before the output synthesis.

Lastly, in future versions we would like to incorporate
the concept of “cross-synthesis,” that is, mixing the param-
eters of two images mixed before the synthesis stage. One
application of cross-synthesis is the creation of what we
call “double meaning” images, where a single image has
both a local and a global narrative occurring simultaneously.
Future work will extend our previous research on double
meaning images [32] and explore its application to mobile
devices.
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